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Introduction

The importance of embedded software and software models as the key part of a product 

has grown dramatically in recent years as the sophistication of semiconductor fabrication 

and system-level manufacturing capabilities have increased world-wide. It is becoming 

increasingly more difficult to differentiate a product based solely on its silicon or manu

facturing content. Increasingly, the value in a product is derived from the intellectual capa

bility embodied in its complexity and architecture, from the functionality encoded in 

embedded software, or at the hardware/software boundary. Coincidentally, as silicon man

ufacturing has allowed for more sophisticated designs to be produced, hardware design 

methods have evolved as well. In order to manage the increased complexity, design meth

ods based on hardware description languages (HDLs) such as VHDL [384| [3871 and Ver

ilog [570] and automated synthesis procedures have become dominant. An HDL-based 

design methodology is distinguished by the primacy of software models in the design pro

cess. Thus, in a very real sense, as silicon fabrication capability has become more 

advanced, the design process for complex systems, whether delivered in hardware, soft

ware or some mixture in between, has come to require the ability to design, simulate and 

debug software and software-rendered models.

The class of systems of interest in this research have been dubbed reactive systems1 by 

virtue of the three characteristics that distinguish them from the more familiar transforma

1
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tion or interactive systems. Reactive systems are distinguished from transformational sys

tems by virtue of being in constant and continual interaction with their environment Their 

very behavior is defined by these interactions and by the fact that they do not halt The 

transformational system, on the other hand, carries with it subliminal notions of batch pro

cessing and questions about the potential and necessity of halting. Neither of these notions 

are suitable for the specification context.

A second aspect of reactive systems is the primacy of time in their specification. The 

system must respond within a certain time bound. In this sense, the reactive system must 

always respond marginally faster than its environment produces. It may never fall behind 

because the environment will not wait for it to catch up. Such a requirement is characteris

tic of control or supervisory applications. This distinguishes reactive systems from inter

active systems such as a mainframe operating system where the environment (a user) is 

ready, willing and able to slow down and wait when the system becomes too overloaded. 

Finally, there is the issue of concurrency. Reactive systems are fundamentally concurrent. 

At the very least there is concurrency between the system and its environment, but more 

typically, there is some amount of internal coordination as well.

To say that a system is reactive implies that in a fundamental sense, it is driven by its 

environment. The environment produces events to which the system responds. In practice, 

designers are often concerned with a slightly broader class of systems which can impose 

their will on the environment of their own accord. These systems are called synchronous 

systems, reflecting their ability to model reactive-type behavior but in addition may emit 

events for which there is no direct causal connection with the environment. This disserta

tion is concerned with the properties of synchronous programs which are used as specifi

cations in the design of reactive system.

t. The term reactive system has been proposed in a variety of places [5991 [3321 [6011 [751. The idea is gen
erally attributed to Pnueli.

2
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With the increase in complexity of system design has come the need to verify the func

tionality of the design before it is manufactured in volume. Traditionally the term verifica

tion when used in an industrial setting, has meant something akin to ‘exhaustive 

simulation.’ When a simulated exercise of all possible behaviors of the design is not feasi

ble, some notion of coverage, functional or structural, is substituted in its stead. Many 

times though, even this restricted set of cases is not tractable so engineers are forced to 

settle for simulating according to a pre-characterized workload. An example might be the 

workload of booting the operating system that will run on the design and executing it for 

several (simulated) seconds thereafter. A single run might be expected to take from several 

tens-of-minutes to several days or even weeks depending on the granularity of the model 

and the complexity of the design.

In addition with increased design complexity comes the need for higher confidence in 

the correctness of the design before it is deployed. Estimates vary but it is generally under

stood that the cost of a mistake increases one order of magnitude for each stage of the 

design/manufacture/deployment process that it remains undetected. The cost of an error 

when discovered in the field may amount to many times the original sale price of the unit 

In response to this need and in light of growing complexity there has been an increased 

interest in verification methods that provide higher levels of confidence than the tradi

tional workload-based simulation paradigm. Such methods have been called formal verifi

cation because they center around proving that all possible behaviors of the design are 

correct under some formally-defined mathematical assumptions.

1.1 Verification Problems

The focus of verification, formal or otherwise, is the development of confidence about 

the design for all possible input sequences. Within that broad goal one can distinguish sev

eral distinct sorts of verification. That is, there are several different sorts of confidence that

3
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need to be developed: *

• Design Verification
This can be thought of as the question “is what I  asked for what /  really want?” The 
design, in all its volume, detail and glory must be checked against some isolated aspect 
behavior. The key at this level is the isolated aspect of the property. Design properties 
are fundamentally of the form '‘no, matter what else this thing does, property X  must 
hold.”

• Implementation Verification
This sort of verification asks “is what I  asked for what I  got?” The design in all its vol
ume, detail and glory has been transformed by some means into a low-level (manufac
turable) description with even more volume and detail. The fundamental question is 
whether the two representations still compute the same thing in some abstract sense.

• Production Verification
The final question is of course “can I tell a good one from a bad one?” The implemen
tation is being produced by the factory at a rate of X  per day. Some percentage Y of 
these don’t work enough to be useful. Define tests that will distinguish the nonsaleable 
ones.

The concern here is exclusively with the design verification problem.

1.1.1 Approaches to Design Verification

Traditionally there have been two ways to approach the design verification problem. 

The first is via methods such as theorem-proving whereby some general statement is made 

about the design using a logic. The statements are then checked for consistency using an 

automated theorem proven Typically such efforts have required a tremendous amount of 

designer intervention to complete the proof and to demonstrate the correctness of the 

design.

The second method, which has attracted much interest in recent years, involves an 

exhaustive exploration of the states of the system with the specific property to be verified 

being checked for every possible reachable state of the system. Here too, the property to

1. These definitions were first proposed by Devadas. Keutzer and Newton [234],
2. The following are representative of this approach: Cohn [203], Gordon [299], Boyer and Moore [102]. 
Bevier etal. [87J. Hunt [379] and Hwang [3811.

4
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be proved is stated in some sort of logic. In contrast with the theorem proving approach, 

the logics used in state exploration contexts tend to have highly restricted expressiveness. 

Such is the price of automation.

Within the state exploration approach there are at least three somewhat complementary 

formulations to the problem: model checking, language containment and bisimulation. 

The three approaches are related in the sense that all are schemes for checking that a 

design provides a model for a formula in some logic. They are distinguished by the man

ner in which the design property is expressed and the details of the algorithms that can be 

used to verify that all possible configurations of the design obey the property.

In the model checking approach [249] [608] [518], properties are declared as a sentence 

in an appropriate temporal logic [248]. The verification step determines that the design at 

hand is a valid model for the formula. This is a much simpler task than proving that the 

property is valid in all possible models as is the case in the theorem proving approach. At 

the user level, model checking is distinguished by the fact that the design property is 

expressed in a sentential form that is fundamentally different than the form of the design 

itself.

A second alternative that uses state exploration is called language containment [706] 

[449] [454], In this scheme, the property is declared in the form of yet another design 

component, one whose only purpose is to monitor the system’s behavior. Both the design 

and the property to be checked are modeled as finite automata, typically automata accept

ing infinite strings. The language containment check ensures that the behaviors produced

1. Unfortunately there are two different languages intrinsic to the subject matter at hand. One is a program
ming language which is used by humans to express the design and its properties. This sort of language is 
referred to in this work as the high level language. the specification language, the design description lan
guage, or simply as the language where the context is clear. The other referent is the automata-theoretic set 
of strings or sequences generated or recognized by a particular finite automata. This language is a mathe
matical quantity and referred to as the language o f an automaton. It is denoted by L (A) for some automaton 
A or simply L where the automaton is plain.

5
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by the design are a subset of the behaviors allowed by the property. In simple terms, lan

guage containment ensures that the design doesn’t do more than the property, or equiva

lently, the design doesn’t have any behaviors that are actively disallowed by the property.

The third state exploration alternative is bisimulation [531] [580] [341] which is based 

on an abstract notion of testing. In this scheme, two systems are compared according to 

the kinds of activities or tests in which they can participate. Both the design and the prop

erty to be checked are modeled as finite automata. In this case the automata are systems of 

states with labeled transitions among the states. The labels on the transitions model 

actions in which the system can engage. Two states are bisimular if for every action and 

every successor state in the first system, there is always exists a similar successor state in 

the second system and vice versa. Two systems are bisimular if every reachable state in 

each is bisimular. In simple terms, bisimulation allows a property to be proved by filtering 

and reducing down a hugely complex design relative to a simple property automata. The 

property automata is simple enough to be shown correct by inspection.

Even though it is less general than theorem proving, the state exploration approach is 

attractive for it requires little or no designer intervention: the design and the property to be 

proved are presented, the algorithm chums for some amount of time, finally an answer is 

returned. Additionally, the algorithms can be extended to return not only the pass/fail 

answer but also a reason why the failure occurred in the form of an error trace to the point 

that the error occurred. From a high level, any formal verification scheme based on state 

exploration can be viewed as following the schematic of Figure 1-1.

1.1.2 The State Explosion Problem

Unfortunately however, all state exploration methods suffer from a problem known as 

state explosion. Intuitively that problem is that the number of states of the composite sys

tem grows with the product of the number of states of the individual components. Thus in

6
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Figure 1-1. A S ch em atic  o f  a Form al V erification System

general the system’s state space is exponentially related to the size of the state space of 

any individual component Recently however, techniques known as symbolic methods1 

have been developed w hich avoid the state  exp losion  problem  in m any cases. The tech 

nique involves conceptually  th inking ab o u t a (fin ite) set o f  states in term s o f its ch arac ter-
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istic function [324]. * The characteristic function is represented as a Boolean formula in 

Bryant’s Ordered Binary Decision Diagram [125]. The power of the OBDD approach to 

symbolic representation is drawn from the empirical observation that the size of an OBDD 

is often much smaller than the set of states that it represents. Thus in many cases state 

explosion is avoided. Unfortunately in many other common cases the size of the OBDD 

representation is larger than an equivalent non-symbolic representation. This represents a 

limitation of the naive application of symbolic methods to formal verification. Indeed, a 

certain number of size bounds are known about OBDDs [126] [233] [518], though the 

general thrust of all the results is that the size of an OBDD data structure bears little rela

tion to any intuitive notions of the complexity of the functions that they represent. What is 

known however is that for a large class of simple functions, the OBDDs are much smaller 

than the sets which they represent and the technique works quite well.

This investigation concentrates on the effect, at the semantic level, of use of chains of 

simple steps, represented symbolically in an OBDD, to approximate the complex mac

rostep behavior of a synchronous systems. The focus is exclusively on the conditions 

which must occur for a semantics of small-step paths for to approximate the usual single- 

step form. As such, though the guiding measure throughout is the use of symbolic meth

ods and the asymptotic size of the associated OBDDs, specific measurements are sup

l . There is at this point an extensive literature on the so called symbolic methods for avoiding the state 
explosion problem. Almost all of them use Bryant’s OBDD data structure [ 125] [ 105111271 or some variant 
of it. Overviews on the use of symbolic methods in formal verification schemes can be found in McMillan 
[518] and Kurshan [454], All symbolic representation schemes however are severely limited by the strongly 
heuristic nature of OBDD methods. More detailed comments on the relevance and utility of OBDD methods 
in this work are found in Section 3.3.4.
1. Though the characteristic function formulation of the finite sets was previously known [324], the intro
duction of the use of an arbitrary boolean formula to represent a set of states is attributed variously to Coud- 
ert etal. [209]. Touati et aL [690]. and Burch etal. [137] because of their almost simultaneous publication of 
techniques for using Bryant’s OBDD in this manner.
2. Only the most vague notion of what constitutes a simple function is necessary for this work. More in- 
depth treatments of function complexity and their effects on OBDD size are given in Bryant [ 126], Devadas 
[233] and McMillan [518]. Non-simple functions are typically data-path oriented computations such as mul
tiplication or shift-store-and-rotate where every bit of input is somehow related to every bit of output.

8
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pressed in the name of a general claim about the conditions necessary for a small-step 

path-based semantics to be equivalent to a big-step single-step semantics.

12  System Descriptions and Formal Methods

Design verification is considered to be a. formal method because it occurs at a symbolic 

level, based on the mathematical properties of the system and its underlying computa

tional model it is complete in terms of what it guarantees. Any formal method consists of 

three components [729]:*

1. a pair of languages; one to describe the system and one to describe its properties,
2. a semantics or mathematical model of computation,

3. an algorithm that checks properties of the design via the mathematical model.

The traditional focus in formal methods has been on algorithm complexity, both asymp

totic and expected, given a material representation (i.e. a data structure and a strategy for 

manipulating it), an arbitrary design instance and a semantics on one of the standard math

ematical models. This is because, in the general case, design property checking is under

stood to have high complexity, although polynomial-time algorithms are known for some 

mildly-restricted scenarios. To a lesser extent, there has been some debate about the utility 

and relationship between the various mathematical models themselves: the various kinds 

of o)-automata or the logics of linear or branching time. These arguments have almost 

always been conducted with an eye towards the intrinsic algorithmic complexity of the 

model and how hard it is, in a practical sense, to check a property under that model. 

Nearly all investigations have ignored the contribution of the first component: the repre

sentation languages used for the design and its properties.

The design representation languages of any formal method admit to a finer analysis.

1. Actually Wolper [729] separates out the program description language and property description language 
as being fundamentally distinct. There are four elements in that presentation.

9
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They can be thought of as having three relevant sub-components:

1. a behavioral aspect declaring the temporal evolution of the system,

2. a structural aspect for aggregating and composing smaller description fragments,

3. some property declarations which state the correct behaviors of the system.

Of these, the first two are the ones of primary interest here for they have been studied the 

least

If one is to interpret a representation of pure behavior as one which provides no hint of 

or constraint on a possible implementation then, within the synchronous model, a behav

ior can be nothing more substantial than an exhaustive listing of pairs of inputs and out

puts that are allowed by the system. Common examples of pure behavior are a primitive 

combinational gate in a library, behaviorally specified by its truth table, or an instruction 

in an instruction set architecture, operationally specified by a microarchitecture or mathe

matically by a transition relation.

Primitive pure behavior is not enough to describe systems. It is infeasible to give an 

exhaustive listing of I/O pairings for a system of any interesting size. As an answer to this, 

a structural means for aggregating smaller units of behavior into larger ones is generally 

admitted in any design description language. Common examples of this are the state 

machine defined as the synchronous product of two component machines or a reactive 

software system where the “instantaneous'’ response is actually produced through a 

sequence of micro-responses computed across a number of submodules. In these cases the 

behaviors of the whole are defined in terms of the behaviors of the components under an 

aggregation rule.

1.2.1 The Significance of Semantic Models

The question then in formal methods is to what extent and in what ways can the struc

ture of the design representation be exploited. This somewhat vague notion gives rise to
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two specific questions which are the central focus of this dissertation:

1. How can the design representation language, inclusive of both its behavioral and struc
tural aspects, be related to the mathematical model and to what extent should the struc
tural artifacts of the design representation be made visible in the mathematical model?

2. How should the structural aspects of the design representation language and their visi
bility within the mathematical model be related to the performance and the implemen
tation of a property-checking algorithm?

Both of these questions focus on language semantics which identifies the relationship 

between a class of programs, as textual artifacts, and an underlying computational model, 

which is a mathematical construction.

Language semantics, as an area of investigation, must involve the study of the properties 

of semantic models themselves as well as the association of these models with programs. 

The concern here clearly is with the computational properties of these semantic models 

and the property-checking algorithms that are built on top of them. This focus could prop

erly be called computational semantics as understood to mean the design and analysis of 

semantics from a computational perspective as well as the study of efficient algorithms for 

deciding questions within the framework of a semantic model. As such, it concentrates on 

the interactions between language semantics, semantic models and formal verification 

algorithms. ̂  It is the construction and properties of such semantics which is the subject of 

this investigation. The following sections present the argument of this thesis in summary.

1.2.2 Languages, Semantics and Models

The semantics of a programming language is said to define the meaning of the programs 

in that language. The association of a mathematically meaningful structure with raw pro

gram text is accomplished through a number of techniques. All of them however, in some 

way, associate with each program instance, a corresponding instance of a general mathe-

l. The sense of this definition is as an amalgam of the traditional sense of computational logic [ 103] [3381 
as applied to a logic defining a computation and that of computational geometry [6061 [730] which focuses 
on the algorithmic aspects of problems in geometry.
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matical model. A language, its semantics and its semantic model are a system (L, M, S) 

as follows:

language: a set L of programs that can be written or drawn in some notation, 

model: a mathematical structure M  such as a logic, a state- or even a function space. 

semantics: a semantic map S:L -» M  which is written S{[program  U = model.

This gives a structure defining a relationship between the language and the model as 

shown in Figure 1-2. That diagram is presented at this point, in its utter simplicity, because 

it will be embellished in a subsequent section. This investigation focuses on the properties 

of S  and M  as they relate both to those embellishments and to the fundamental computa

tions of formal verification.

L 

S
I

M

Figure 1-2. A Language, its Semantics and the Model

A semantics is said to be denotational when the denotation, in A/, of a program, in L. 

depends on the denotations of its constituent terms and not on their structure. This means 

that S is defined using one or more composition functions « :M x Af -» M so that:

S J statementx;statement^ D = modelx° modeln = modelX}-,

The language composition term (the ’ above) may vary according to the kind of state

ment, just as the composition function ° :M x M  -» M may vary according to the seman-
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tics S  and model M.  The essential point is that association at the language level denotes 

composition at the mathematical level.

A semantics is said to be extensional when two denotations in the model are the same 

when they behave the same way under some notion of behavior. Typically a requirement 

of extensionality is discharged through the use of a unique element m e  M  to represent 

each distinguishable behavior. For example, the transition relation of a combinational net

work is fully abstract whereas a sum-of-products “cover” for the network’s function is not 

extensional.

A related notion is fiill abstraction which is the condition that language terms have the 

same denotations whenever the terms are interchangeable in complete programs. Full 

abstraction is generally considered a good thing in a semantics because it means that there 

is no extraneous information in it. A less abstract semantics (i.e. a non-abstract semantics) 

would have extra information in it. These extra artifacts are properly called implementa

tion details.

Unfortunately however, fully abstract semantics for finite state models are known to be 

too computationally expensive in the general case, even when symbolic methods are used 

to combat the state explosion problem. This dissertation therefore is concerned with a 

notion of substitutability wherein a non-abstract semantics which is computationally more 

regular can be said to stand in for the fully abstract one and vice versa. Substitutability 

rests on three propositions which are argued in the sequel: first, that the transition relation 

is the fundamental semantic model for finite state systems; second, that full abstraction 

implies a single-level discrete time; and third, that non-abstractness implies a fine struc

ture within the discrete time that can be properly called 8 -time. The highlight of this 

notion of 5-time is that it is defined mathematically and wholly independent of any simu

lator event loop. Substitutability is thus a condition on when 8-time is a well-defined fine
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structure within a semantics.

U  Transition Semantics of Finite Models

In formal methods, the most widely used semantic model is one that can be seen to have 

a direct analogy to both sequential hardware systems as well as to synchronous software 

systems with finite state. It is a temporal model consisting of a set of states, a transition 

relation and a labeling of the states: *

M  = (Q , T)
where:

Q  is a set of states,

T c z Q x  Q is the transition relation describing the step-by-step evolution of M. 

Within this framework, the transition relation T  can be conceptually thought of as an 

exhaustive tabular listing of the dynamic evolution of the system. The temporal structure 

M  = (Q, T) is therefore a pure behavior under the definition given above.

What is significant here is the exclusive focus on the set of states Q and the transition 

relation T  as the primitive definition of behavior. Various semantic models differ with 

minor modifications about this central scheme but the basic nature of the state set Q and 

the transition relation T remains. Indeed, save for one or two rather exotic cases which are 

exemplary in their originality, all finite-state semantics and their models focus on defining 

behavior in terms of transitions between states. However, within the general framework of 

M  = (Q,T)  there are numerous variations. For example, adding labeled enabling condi

tions a  e  Z on the edges in the transition relation produces T c Q x Z x Q  and defines a 

class of automata which are subject to some formal language-theoretic acceptance condi

l. Such a model is also interchangeably referred to as a Kripke structure [443] in the literature. In the gen
eral case, there is a third element <t>:Q -*■ 2‘ which is a function from the set of states Q to a subset of some 
externally specified atomic propositions A P . Without loss of generality, the proposition map <t> can be taken 
as isomorphic to Q and so are elided for this work.
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tion [684]. Interpreting this enabling condition as an input/output pair (i, o) e  I x O  pro

duces the transition relation as T c i Q x l x O x Q  which is the familiar transition relation 

of a finite state machine with inputs and outputs [439]. One issue which should be noted at 

this point is that M , in its unembellished form is a primitive. In particular, it does not sup

port composition: there is no notion of communication upon which to build such a coordi

nation scheme. In the sequel such an embellishment in the form of inputs and outputs is 

assumed as necessary.

The survey of semantics and semantic models in Chapter 2 establishes that at a very 

primitive level the semantic models of finite state systems, identified by whatever reason

able means, are characterized by states and transition relations. There are exceptions to 

this and thus for completeness two of the more exotic language-model systems are 

reviewed to illustrate the non-standard approach. The major point at this early stage is that 

the state transition approach is fundamental and that this view holds independent of any 

language syntax or semantic model abstraction. The argument is essentially that “this is 

now nature really works.”

13.1 Full Abstraction and Discrete Time

Having established that the transition relation is the fundamental semantic model of 

finite state systems, the next obvious question is how the property of full abstraction 

makes its appearance in a transition-based model. The answer can be seen by examining 

the notion of what constitutes a ‘behavior’ in a fully abstract regime. Leaving unspecified 

exactly what defines a behavior for the moment,1 a broad observation about behaviors, the 

notion of full abstractness of semantic models M = ( Q,T)  and the structure of time can 

be made. The notion of full abstraction in a semantics refers to the behavioral properties

L. The presentation of a concrete scheme for behavioral property definition is deferred until Section 3.2. For 
the present development, any of the previously mentioned schemes of model checking, language contain
ment or bisimulation can be understood as defining a behavior in this vague sense.
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of denotations m e M  not to the internal structure within any element m itself. Thus the 

observation is that the kinds of behaviors of interest in formal verification are those which 

occur across multiple steps in M.  That is, the behavioral properties of interest are some

how characterized solely in terms of sequences of states or sequences of transitions. In 

particular, there is no notion of behavioral properties which are defined in terms of intra

transition relationships. The answer therefore is that while such a fine structure may exist 

in the transition relation, it is of no use in the definition of behavioral properties.

The vague and informal definition of behavior provided at this point is sufficient to 

illustrate the exclusive focus on states q e  Q and transitions t e  T necessarily implies 

that time has a single-level discrete structure, as seen from the perspective o f the behav

ioral properties. This one-level model of time is illustrated in the diagram of Figure 1-3. 

This characterization of the discrete nature of time means that there are two views of time, 

one view from within the semantic framework and one view from the outside. From the 

internal perspective, time is measured in units of steps and two events occurring in the 

same step are said to occur at the same time, or equivalently they occur in zero time. This 

is because from the internal perspective, time is measured in units of steps. From an exter

nal perspective there may be some observable ordering or measurable temporal distance 

between the two intra-transition events. This is because from the external perspective, 

time is measured in units such as nanoseconds, minutes or days. The key distinction is that 

within the framework of a fully abstract semantics, temporal relationships within a step 

are entirely unobservable.

— — —  i -  . Time

T, T2 T3 T4 T5 T6 T7

Figure 1-3. The One-Level Time of a Fully Abstract Semantics
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13.2 Non-Abstractness and 8-Time

If a fully abstract semantics is said to uniquely reflect the operational behavior of the 

language without containing any extra extraneous information, then a non-abstract seman

tics is one which denotes the operational behavior in some non-unique way. Indeed, there 

may be multiple denotations in the model that have the same behavior.

The previous section defined a transition relation for a fully abstract model as one 

where there is no internal structure. There, the transition relation was conceptually an 

exhaustive listing of current-state/next-state pairs. This implied a discrete notion of time 

which had a single level and between any two temporal instants nothing could be 

observed. In contrast a non-abstract transition system is one where there is internal struc

ture. The transitions between states, instead of being atomic, are paths o f state transitions 

on some finer level of granularity. The transition relation at this finer level is T& and the 

transitions are called 8 -transitions. This finer level of time is called 5-timel and the re la 

tive scales o f 8-time and (macro) time are related only by the embedding of 8-time within 

a single macro step. This two-level model of time is illustrated in Figure 1-3. That macro 

time and 8-time are related by embedding only is significant because it means that there 

may be an arbitrary, but not infinite, number of 8-steps within a macro step. This will be 

important in the definition of a substitutability property wherein a non-abstract semantics 

defined on Ms = (Q8, Ts) can be said to stand in for a fully abstract semantics defined 

on M = (Q,T)  and vice versa.

13.3 The Substitutability Condition

Having stated the notions of the primitiveness of the transition-based model, full 

abstraction defining discrete time and non-abstraction inducing 8-time, the conditions for

1. The symbol 5 is used here to as a subscript mark to denote quantities in microtime. The natural 
character p already has a use in the p-Calculus notation as the least fixed-point operator. Too, the term 
“delta-time” has precedent in the literature from the time model of VHDL [3841.
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Figure 1-4. The Two-Level Time of a Non-Abstract Semantics 

substitutability can now be defined. One can observe that the current interest in formal 

verification techniques using state-space exploration are driven by the ability to process 

large sets of states at one time using symbolic representations for the state sets. The key 

aspect of the substitutability condition is related to this shift from a singleton-oriented to a 

set-oriented viewpoint The insight is that Scott’s domain-theoretic model * of computable 

functions applies not only to functions acting on a single state (represented in non-sym- 

bolic form) but also to functions acting on sets of states (represented in symbolic form) as 

well.

Figure 1-5. The Forward and Backward Simulation Operations

1. The presentation of Scott’s theory of semantic domains is deferred until Chapter 3.

18
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In its basic form, the domain-theoretic model represents every computable function as 

the fixed point of a (different) monotonic and continuous functional on a directed domain. 

The function which determines the singleton successor state q x that is related to the sin

gleton predecessor state qQ by a transition relation T  is computable in a functional form. 

This function, depicted in Figure 1-5, is denoted by f { q Q} and is generally referred to as a 

forward simulation computation. The function that determines the successor state set Ql 

which is related to the predecessor state set Qq by a transition relation T  is computable 

as well. This function, depicted in Figure 1-6, is denoted by F  {Q0} and is referred to as 

the forward image computation. * According to the theory, there must be an fixed formula

tion for both the f { q }  and F  {Q } cases. Substitutability will be the conditions when such 

an approximation-based computation, which is necessarily non-abstract, can be seen to be 

a replacement for a fully-abstract single-step version, and vice versa.

More concretely, in the case of the forward execution computation /  shown in Figure 1- 

5, Scott’s theory implies that /  can be approximated as J  where q x = J { q 0}. Since q x 

is computable from qQ by J  there must exist a functional, call it such that J  =

The functional J  is the least function satisfying J  = y s {f}.  Thus q x can be computed 

from qQ by means of a fixed point computation that produces J  through a series of better 

and better approximations to a well-defined limit. So J  = |x/h and q x = }.

The key to substitutability is that Scott’s theory necessarily applies to computations 

involving sets of states as well as singleton states. In the case of the set-oriented computa

tions, depicted Figure 1-6, the argument is recapitulated in its entirety. Scott’s theory

1. Historically [427] the forward direction has been called the image computation and the backward direc
tion has been called the pre-image computation.
This terminology has been adopted more or less directly in symbolic formal verification arena as well: c.f 
Coudert et a l  [209], Touati et al. [6901 and Burch et al. [137].
The terms forward image and backward image are used in this presentation to emphasize that the operations 
are indeed symmetric, especially so in the fully abstract case. Additionally the terms forward and backward 
motivate the use of F [Q] and B {Q} as the operator symbols for the respective computations.
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B { Q X} -*<2o

Figure 1-6. The Forward and Backward Image Computations

implies that F can be approximated as F where Qx = F {Q0}. Since Qx is computable 

from Qq by F  there must exist a functional, call it 3%, such that F = 3^{F}.  The func

tional F is the least function satisfying F  = ^ { F } .  Thus Qx can be computed from Q0 

in a means of a fixed point computation that produces F  through a series of better and bet

ter approximations to a well-defined limit. So F = and Qx = {Q0}.

This work therefore concentrates exclusively on this latter formulation in terms of sets 

of elements Q , the image functional F  and the image approximator functional (and of 

course the corresponding backward image functionals B in terms of its image approxima

tor functional C8S). This is here called an image semantics. Not only does the formulation 

allow for the convenient treatment of unbounded nondeterministic behavior at the mac

rostep level but it also has the advantage that it entirely subsumes any construction based 

on a “point” simulation semantics.

Chapter 3 is dedicated to defining substitutability at the model level, purely in terms of 

F {Q} and B {Q}, and thus in the absence of any language or semantic considerations. 

There, substitutability is shown to be the case when the diagram of Figure 1-2 commutes.1

20
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That is, when there exists a quotient or projection operation n  which takes structures in 

the model Mh and projects them down onto the fully abstract model M . This construction 

produces the intuitive notion of 5-time within discrete (macro) time in a mathematically 

sound way and hence is independent of any simulator event loop. For every program 

p e  L with a fully abstract semantics 5|T p fl e  M  there ought to exist a non-abstract 

semantics Ss |[ p 0 e Afs . This means that there must exist a well-defined projection func

tion n:Afs -»Af. The existence of such a function for any non-abstract semantics is 

strongly dependent on the kinds of properties that it must preserve.

M5

n
▼

M

Figure 1-7. A Language, its Fully Abstract and Its Non-Abstract Semantics

1.4 Limits on Semantic Models

Given the potential expressiveness of S5 with its multi-step 5-paths and the require

ment that n  lake any such 5-path of M8 to a (macro) step of M in such a way that 

S = S5°n ,  there must be some limitations on the admissible 5-paths definable by S5. 

Intuitively, the set of admissible 5-paths definable by Ss are constrained in three ways.

1. The diagram, and indeed the whole approach o f this work broadly follows Mulmuley [5501. The focus 
here however is exclusively with finite-state synchronous systems rather than the more general typed 
X -calculus (PCF).
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1. S8 must be able to express the same range of elements in M  that are expressible by S. 
S has a property known as responsiveness so S8 must have this property as well.

2. The 5-paths defined by S5 must not contain information that n  cannot project down 
from A/g onto M . This is a regularity constraint known as modularity.

3. Since FT is a projection, any order observable within m v  m0 e  Ms must also be 
observable between their projections r i{ m 1} ,n { m 2} e M. This is a principle 
known as causality which is implicitly carried across from the 8-paths in Ms .

Thus for substitutability to hold in a general semantics Ss , the semantics must be respon

sive, modular and causal. Unfortunately, it can be shown that no semantics can possess all 

of these properties at one time. This sharply limits substitutability as a general property of 

an arbitrary semantics. Fortunately however, substitutability can be recovered on a case- 

by-case basis through various kinds of analyses. First however, a more concrete under

standing of the notions of responsiveness, modularity and causality must be developed.

1.4.1 Properties of Semantic Models

The three properties are described informally here with the formal definition deferred 

until Section4.1.

Responsiveness

A system is considered responsive if the system’s output comes simultaneously with the 

input that causes it. A semantics is considered to be responsive if it is possible to define a 

responsive system under the rules of the semantics. For this definition to be meaningful it 

must be interpreted in the framework of abstract notion of time wherein two events can be 

considered to occur at the same time. The intuitive notion thus is of two events occurring 

within the same clock cycle in the case of hardware. For more abstract synchronous soft

ware systems there is typically a notion of an event and its reaction which are considered 

as an atomic unit. In the mathematical sense, the responsiveness criterion can be shown to 

be equivalent to the distinction between a Moore machine and a Mealy machine [3681. 

Responsiveness has its basis in the fully abstract model M because clearly Mealy machine 

behavior can be declared in that model.
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Modularity

A semantics is modular if the rule for aggregating components into a whole obeys the 

property that all parts of the system can be treated symmetrically, inclusive of intra-com

ponent communications and component-to-environment communications. Further, every 

part of the system must have the same view of the instant-to-instant computation. In par

ticular, a semantics is non-modular when information is communicated between compo

nents through either the order that outputs are produced or if outputs can adopt more than 

one value in a step. Modularity is discharged in practice through a broadcast model of 

inter-component communication with single assignment per step. In a informal sense, the 

modularity criterion can be thought of as a sort of linearity condition under which the 

behaviors of the product machine is the intersection of the behaviors of the component 

machines. Modularity has its basis in the fully abstract model M  as a limitation on the 

amount of information which can be exchanged in a step. In the single-step form outputs 

can only be assigned once. Further, since there is only one step there can be no order 

between the output-deflning steps; all the outputs must be deGned at once in the single 

step of the semantics.

Causality

A semantics is causal if for any event that is generated in an instant, there is a direct 

(causal) chain of events leading up to it. Mathematically stated, there must be a consistent 

ordering among the components’ executions when they are aggregated into the whole. 

This deGnition is consistent with the standard usage of the term in system theory: a causal 

system is deGned as one which does not anticipate its own future.* Causality is thus a 

practical condition that requires that a system be able to compute its reaction based only 

on its view of present and past behavior, without having to look ahead in time. Causality

1. Similar definitions can be found in most systems-theoiy textbooks [568] [399] [735].
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has its basis in Afg from the explicit ordering of the 5-paths which is implicitly carried 

across into Af.

These three properties cover aspects of central importance to the existence of 

ri:Afs -» Af in terms of the expressiveness in Afg and Af. Responsiveness, with its basis 

in Af. is a compactness condition driven by the fact that Mealy machines are more com

pact than Moore machines by a multiplicative factor [439]. Modularity, with its basis in 

Af, is a compositional linearity condition that is fundamental to any formal verification 

method based on state space exploration. Finally, causality, with its obvious basis in Afg 

with its projected effect being visible in Af, is a condition on the realizability of the transi

tion structure T  in the physical world where time only runs forward. The origin of these 

properties is depicted in Figure 1-2. Unfortunately, in sum, these properties are incompat

ible; there is no general semantics S or 5g which is responsive, modular and causal.

Figure 1-8. The Origins of Structural Properties in Semantics Models

1.4.2 The RMC Barrier

Any finite semantic model Af = (Q,T)  can be characterized by whether it is respon

sive or not (/? or /?), modular or not (Af or Af) and causal or not (C or C ). Such a char

acterization is of course not unique. What is important however is the theorem, due to 

Huizing and Gerth [378] which states that no semantics can be R , Af and C all at the
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same time: There is no RMC  semantics. This theorem is here called the RMC Barrier 

Theorem. * The theorem and its proof are given in Section 4.2 both for completeness and 

because the details of the proof both illuminates ways to approach the design and analysis 

of semantics, and also the ways of surpassing the RMC Barrier on a case-by-case basis.

1.4 3  Microsemantics

The notion of approximating the transition relation T by a finite series a microseman

tics under which transitions t e  T  are constructed from a sequence of smaller 

transitions r5 e  Ts . As mentioned, it is typically impractical to give T  directly in the 

monolithic form for any system of reasonable size. A structural method for aggregating 

smaller sub-models must be defined. In fact this aggregation is the major utility of the 

semantic composition operator o M  x Af -» M. In the abstract, semantic models are dis

tinguished by the rules under which this aggregation is accomplished or even allowed. 

One of most straightforward possibilities is the “synchronous product” by which a tempo

ral structure is defined in terms of two smaller substructures:^

M  =  (Q, T) = M , x M 2 =  { Q l x  Q2, T { x  T J  

In the general case one writes M = n * , -

There are a wide variety of possibilities for the definition of the synchronous product 

operator TX* T 2. It may be as simple as representing the coordinated single-step transi

tions as would be natural under the fully abstract transition relation T{ x T 2 = Tx a  T , . 

More likely, and definitely more interesting however, are the cases where Tx x T, 

depends on some finer structure of Qs or Ts . For example it may be convenient to con

1. The term The RMC Barrier is unique to this presentation.
2. The reader is asked to forego the minor notational sloppiness here that Tl and T, need to be “raised” into 
the domain of Qx x Q2 . Indeed, in the strictest sense, one cannot directly multiply two Kripke structures 
together because there is no notion of external communication, inputs or outputs, with which to modulate 
such activity. Af is explicitly a static structure. The intent here is to present the flavor of the situation which 
is implicitly or explicitly in terms of states and transitions between the states. A more formal presentation is 
deferred until Chapter 3.
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sider a state q e  Q as consisting of a state component s and an input/output component o, 

whereby each q is a pair q = (5, o). Or, it may be convenient to consider transitions 

f e  I  as actually having some internal structure, of having a 5-time which consists of 

some sort of multi-step chain where each t = {^qQ, 5 L> S0, Sk, q^j.

The identification of such finer intra-model properties within Q8 and Ts of the model 

A*s = (G5. r s> is here called microsemantic analysis. This analysis characterizes any 

semantics in terms of its microsemantic operators and its path-spanning consistency con

ditions over the 8-transitions r5 e Ts . This analysis in turn leads to a summarization of 

the semantic model in terms of R. M , and C. Several important semantic models which 

have been proposed over the years are analyzed in terms of microsemantics in Section 4.3.

1.4.4 Beyond the RMC Barrier

The RMC Barrier implies that there is no clever language semantics, extant now or yet 

to be discovered, which provides all the RMC benefits, under all conditions and on a guar

anteed basis. Fortunately however, the statement of the RMC Barrier Theorem is phrased 

in terms of semantics which are mathematical rule structures that describe whole classes 

of systems. The RMC Barrier is silent on the properties of individual instances of a 

semantics. Individual instances are specific programs or particular systems descriptions. 

This subtle distinction can be seen in the definition of responsiveness which is phrased in 

terms of the kinds of systems that a semantics allows to be defined.

The subtle difference between semantic models and an instance of a semantic model 

implies that it is possible to move beyond the RMC Barrier on a case-by-case basis. Five 

different ways in which the RMC Barrier has been surpassed in existing systems are iden

tified in Section 4.4. Two of these methods are the static and dynamic check for RMC  on 

the specific program instance at hand. In such schemes, the semantics Ss on the model 

Afg and the projection operation FT mapping down to the model Af are contradictory (as
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predicted by the RMC Barrier Theorem). These two methods for surpassing the RMC 

Barrier take advantage the potential for 5S°IT to be consistent on an admissible m e Afg 

but not in the general case. In fact, the definition of the Synchronous Languages such as 

Esterel [751 [2951, Lustre [1531 [3211 [3201, Signal [464] [65] [465] and Argos [5011 

[502] [503] are phrased in terms of an explicit procedure that verifies that only programs 

having the RMC property are declared legal. This procedure is usually called causality 

checking because the semantics are already responsive and modular, it is only the causal

ity property that may fail to hold. Causality problems manifest themselves in different 

ways depending on the particular operators available in the language’s semantics.

1.5 Analysis and Design of Semantics, Languages and Models

These four elements, the view that transition systems are the fundamental semantic 

model, microsemantic analysis, the three properties of responsiveness, modularity and 

causality and the ways for surpassing the RMC Barrier are treated here as a framework 

both for classifying existing semantics and languages as well as for proposing new system 

description languages.

15.1 Applied Semantics

Within the framework, a survey of existing semantic models is undertaken in Chapter 5. 

There, a variety of models are examined. In addition to the models which directly fall into 

the class of decidable finite-state synchronous systems, two choice examples of undecid- 

able semantic models are examined as well. These two examples are interesting because 

they lie at the border of undecidability and therefore give some sense of the limits to 

semantic expressiveness beyond mere state transitions. Their undecidability shows that 

any of the obvious features which might be added to a state-transition semantics, render it 

non-finite or otherwise undecidable.

The overall argument of the treatment in Chapter 5 is the claim that the Synchronous
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Languages, Esterel, Argos, Signal and Lustre the best choice of semantics in the sense of 

offering the widest range of language styles while at the same time preserving expressive

ness at the fully abstract model level. The Synchronous Languages have an RMC seman

tics and use either a static or dynamic check for causality to surpass the RMC Barrier. This 

scheme is argued to be optimal in the sense that it is most expressive in the fully abstract 

model M  and allows the widest range of flexibility in the non-abstract model Ms without 

compromising the existence of the macrotime projection operator n . This is roughly seen 

as: the R property allows Mealy-type behavior, the M  property implies that the 8-time 

level always is projectable down to macro time (where there is single and unordered 

assignment on outputs). Finally, the loss of the C property in the general case is not of 

great import because the non-causal descriptions were never really constructible in the 

real world anyway. The semantic checks for RMC ensure that the described systems are 

fully expressive (/?), have a sound and consistent interpretation in macrotime (M) and can 

be reasonably implemented in the real world where time only moves forward (C).

1.5.2 System Description Languages

This background then allows for an analysis of system specification languages from a 

semantic perspective. Such is undertaken in Chapter 6. While it is not feasible or even 

necessarily productive to classify all previously proposed languages in the framework 

here. In fact many proposed languages were never concretely enough specified to make 

such possible and indeed many have changed their meaning and intended use over time 

through subsetting and extension. What can be done however is to sort the languages 

according to their intended use and the means by which their semantics is given. This is 

shown to clarify the language design problem to the extent that only the languages 

designed with a semantics-based analysis of program behavior in mind have been well 

enough specified to be analyzed in the framework here. This is actually not surprising 

since simulation-oriented images are generally tuned towards convenience and a particu-
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lar simulation algorithm while synthesis-oriented languages are shown to be generally 

tuned to some key set of data structures which enable the key operations of synthesis. 

Such classifications are useful for understanding the language design problem relative to a 

particular application focus. The classification scheme also exposes the inappropriateness 

of using languages with discrete event semantics such as VHDL [384] [387] and Verilog 

[5701 for system specification.

However despite the overwhelming sense of their inappropriateness, there is an abiding 

popular interest in using the industry standard simulation-oriented HDLs as system 

description languages for all the uses: ‘true’ execution via simulation, specification for 

synthesis and symbolic execution via (formal) verification. The exact reasons for this 

interest are certainly beyond the scope of this investigation. There are numerous social 

and economic factors involved in the adoption of such design technologies not the least of 

which is an immense investment in personnel training and implementation infrastructure 

for the standard languages. To this end much of Chapter 6 is oriented at analyzing the 

standard hardware description languages in the framework developed here. In particular, 

the discrete event paradigm of VHDL and Verilog are shown to have a three-level time, 

the familiar macro-time and 8-time as well as the new r)-time. This is markedly different 

from the two-level structure which is commonly taught for the semantics of discrete- 

events. As such discrete-event semantics is RMC and R8M8CS. This implies that dis- 

crete-event semantics fails to have a well defined macrotime projection operator n  and, in 

turn therefore, there is no fixed point formulation for F{ Q}  and B {Q} (or f { q )  or 

b {q}). This means that substitutability fails to hold for discrete event HDLs. In a strong 

sense this failure makes their use impossible in the formal setting absent some sort of 

semantics-based subsetting.

To this end a subset of VHDL, Synchronous VHDL [47], which preserves the modular

ity property is studied within the framework developed here. This subset re-arrives at an
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RMC semantics and comes as close as possible to establishing a subset of the discrete 

event paradigm where the diagram of Figure 1-2 commutes. Unfortunately, this experi

ment is only partially successful because of some minor, but crucial, aspects of the event- 

driven nature of VHDL semantics. Among these are that discrete event semantics is based 

on events and not on assignments. Events are changes in value while assignments estab

lish the definition of a variable in its domain. Secondly, the three levels of time bring an 

intrinsic confusion between state variables and output variables in the microsemantic anal

ysis. This added level of complexity contributes to the failure of substitutability for the 

semantics of discrete events.

Even if the semantic problems could be completely ironed out satisfactorily, there 

remains a language style aspect having to with the flat process model of the discrete event 

HDLs, namely that structural aggregation can be hierarchical (e.g. the instantiation of an 

entity) but behavioral components must be flat (e.g. a process is a single thread of con

trol). This lack was pointed out in the earlier work which defined Synchronous VHDL 

[47]. With the benefit of more experience there now exists a proposed language extension, 

the SpecCharts [2771, which allows for the compact and elegant expression of hierarchical 

behavioral specifications. The potential to marry the Synchronous VHDL subset and the 

SpecCharts language extensions is proposed as a means for acquiescing to the broad- 

based desire to use an industry-standard HDL at all costs while at the same time address

ing the practical need for a language with hierarchical behavioral definitions which built 

upon a mathematically sound semantic model.

1.6 The Nondeterministic Abstract Machine

The ideas of computational semantics, microsemantic analysis, RMC Barrier theory and 

the lessons learned from examining both applied semantics and previously-defined system 

description languages form a guide to the design of languages based on synchronous
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semantics. The culmination of this work is the definition of the Nondeterministic Abstract 

Machine (NDAM). It is an instance of an instruction-oriented operational semantics with 

the synchronous properties:

• It is a non-abstract image semantics with microsteps defining a “5-time” within a step.

• The definition of a step is the fixed point of the microsteps across 5-time.

• The semantics is intrinsically RMC.

• The RMC Barrier is addressed by admitting only descriptions where C holds. 

Additionally the representation has several domain-specific features which make it

extremely convenient for practical implementation and formal verification. In particular, 

the NDAM has an operational definition which affords a compact and efficient runtime 

implementation scheme. Such a runtime system has been constructed. Also of interest is 

the allowance for the so called “selection nondeterminism,” which is shown to be compat

ible with synchronous semantics (i.e. the definition of concurrency is not based on a non

deterministic interleaving of independent threads). Nondeterminism of this sort is 

necessary in the formal verification context where it is used as a behavioral abstraction 

mechanism in conjunction with fairness constraints. The central design goal behind the 

NDAM is its use as an intermediate representation in the compilation of synchronous lan

guage with an imperative style. To this end, compilation schemes for Esterel and Synchro

nous VHDL have been constructed.

1.7 Review

It is the contention here that full abstraction is too great a price to pay in the design of 

system description languages and their semantics. Further that there exist non-abstract 

semantics which are substitutable for the fully abstract one but which are simpler and 

more convenient for use in formal verification computations. That is, the non-abstract 

semantics are simpler in the sense of it being easy to observe in S8 the sense of a direct 

analogy between the language L and an operational view of the denotational model M8.
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Such cannot be said of the fully abstract semantics S or its denotational model M. A fur

ther thread of argument in this work is that the very abstractness of a fully abstract seman

tics precludes any deeper insight of how system description languages ought to be 

constructed in the first place. By identifying the conditions when a non-abstract semantics 

can be substituted for the fully abstract case and vice versa gives a more or less direct pre

scription for the semantic features that ought to be in a well-designed system description 

language.
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^  Semantics and Models

One might well wonder why a language semantics is needed at all. It is entirely reason

able to adopt the philosophy that a properly designed programming language should be 

“intuitive” in the sense that there should be no need of extra artifices for specifying its 

“meaning.” In the realm of algorithmic sequential programming languages where the 

underlying model of computation is widely understood and reference implementations 

exist, the issue of semantics is mostly one of recording implementation freedoms and con

straints in a common notation. ̂  Where the underlying model is part of the design problem 

as well, there is an overwhelming need to describe not only the model, but also how pro

grams denote structures in that model. So, from one angle the issue of language semantics 

is an issue of specification: a semantics defines what computation is being described by 

the language.

From another angle, one can take a mathematical view of the situation. In that light, 

there are two ways that one can consider any notation, programming languages included. 

The first way is as textual or pictorial symbols to be manipulated according to a set of 

grammatical rules. Seen in this way, languages are free objects, having no interpretation or 

associated meaning. The only sensible distinctions that can be made in such a regime are 

between (grammatically) correct programs and those with syntax errors. The second con

l . The recent definitions of Scheme [6171 and Standard ML [537] can be said to fit this description.
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sideration is one in which an interpretation in an underlying mathematical structure, is 

associated with the symbols. With such a structure, one can make model-theoretic state

ments about programs such as: two programs are the same if they do the same thing or the 

set of behaviors of one program is a superset of the behaviors of another. The semantics of 

a programming language is the means by which the association between the tangible rep

resentation and the mathematics is established. The underlying mathematical structure is 

called the semantic model. *

The semantic model of a programming language is a fundamental part of its design. It 

lies at the base of all the possible design decisions about the language. This is particularly 

true in the case of verification where the semantic model’s theoretical properties are what 

is declared by programs in the language and what is manipulated by the verification algo

rithms. This view of the relationship between programming languages and a given seman

tic model is illustrated in Figure 2-1.

This chapter focuses on two aspects of programming language design which are 

directly related to semantic models: the methods for giving semantic definitions and the 

range of possibilities for semantic models. The purpose of this survey is twofold. The first 

purpose is of course that of illustrating the diversity which is possible in semantic models. 

At the same time however, the argument presented here is that this diversity is illusory 

because despite the range of semantic model formalisms, for the class of synchronous 

finite state systems, semantic models are fundamentally defined by states and transitions 

between them. In particular behavior over time is fundamentally defined by a transition 

relation.

I. Some authors use the two terms semantics and semantic model interchangeably. Where no confusion 
may arise, this convention is adopted here as well.
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Language A Language B Language C

Internal
Representation

Semantic
Model

Figure 2-1. The Three-Phase Construction of a Language and its Semantics

2.1 Semantic Specifications

With our understanding to date, the means for specifying the semantics of computing 

systems can be loosely organized into three complementary approaches: axiomatic 

semantics, denotational semantics and operational semantics. Each of the methods was 

developed to address some particular need in specification and this background has col

ored and to a certain extent, limited the application of the pure forms of the basic specifi

cation technique. Recent trends in semantic specifications have addressed this issue by 

blending the strengths of one or more of the pure approaches in an effort to synthesize a 

new approach with the strengths of all and the weaknesses of none. The computational 

semantics approach presented in Chapter 3 of this work can be seen in that light.

2.1.1 Axiomatic Semantics

One of the first methods for specifying the meaning of programs was proposed indepen-
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dentiy by Floyd [263] and Hoare [352]. Later presentations* introduced some modifica

tions, however the method has collectively become known as FIoyd-Hoare Logic [300]. 

The essential idea of the method is the association of preconditions P and postconditions 

Q with each statement or step S in the language. The set of axioms for the language is 

given in the form {P} S  {Q } for every 5 . The axioms are accompanied by a set of deduc

tion rules that define how the constructs of a program relate the predicates P and Q . A 

Floyd-Hoare logic is a first-order system of logic; it allows quantification over elements 

(but not sets of elements) within a variable’s domain. It is considered an exogenous sys

tem of logic because program statements S are considered on a par with the formulae P 

and Q ?"

The strength of the axiomatic method is that it focuses exclusively on the issue of prov

ing properties about programs, leaving the finer details of value representation unspeci

fied. The method focuses on relating representations of truth before S is executed to truth 

after S is executed. In this sense each axiom can be seen as an abstract representation of a 

transition relation. In fact, the formal definition of the precondition-statement-postcondi- 

tion structure {P] S {Q\ is given in relational form as (y., y| + ,) e  0p[[ S H for the state 

configuration y = <s, c> denoting the pairing of the program variable state predicate s 

and the continuation c. The structure Op\[ o Q is called the operational transition rela

tion. That the axiomatic behavior is given in terms of a transition relation is a point that is 

returned to later in this section.

The method has a number of weaknesses, among them being that the representation of

1. For example, Dijkstra's weakest preconditions calculus [2371, Pratt’s dynamic logic [603] or Boyer and 
Moore's computational logic [ 103] among many others. Cousot [213] reviews these as well as numerous 
others.

2. In an endogenous system of logic such as Temporal Logic [599], the program is a completely separate 
conceptual entity. Reasoning about the program must be done through the artifice of predicates about its 
internal state. A prototypical example predicate is one that makes a claim about the value of the program 
counter, e.g. pc a L(0xlA3F>.
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side effects is problematic in the axiomatic method. While the direct side effects of the 

statement S are represented explicitly by its axiom there may be other variables affected 

by the execution of S that aren’t explicitly represented in its axiom. Such is the case 

where S is an abstraction of a larger computation. A prototypical example in this regard 

are global variables which are modified by a procedure call. This same problem arises 

when the basic sequential axioms are extended to support nondetenninism or concurrency. 

A second detriment is that the method focuses on the halting aspects of the computation. It 

distinguishes total correctness which shows correctness and termination from partial cor

rectness where the correctness is contingent upon termination which unproven.

At a more fundamental level however, the axiomatic method is problematic because it 

does not relate programs to their denotations in any mathematical model. This lack can be 

seen in constant focus on the soundness and completeness of the logical theory arising 

from the axioms and deduction rules. Cousot [213] reviews of the results on the soundness 

and relative completeness under various domain systems. Interestingly, contrary to view

ing this as a flaw, Hoare considered the domain underspecification issue to be a strength 

rather than a weakness because it allowed for the domains of variables to be made more 

concrete at some later point [352].

2.1.2 Denotational Semantics

A second approach to language semantics that moved to address the model association 

deficiency is the denotational semantics method proposed by Scott and Strachey [640] 

[642] [528] [673]. The meaning of a program in the subject language is identified through 

an associated with elements of an appropriate space of functions computable in Church’s 

-calculus [174]. The appeal of the ^.-calculus is that it is said to be universal in the sense 

of having the power to describe any computable function.
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A language semantics is given in terms of a notation that equationally associates syntac

tic structures in the language with valuations an underlying domain described by expres

sion in the A.-calculus. An effectively separate body of theory ̂  was developed by Scott 

that proved the existence of a model for the A.-caIculus: p  ©, the power set of the natural 

numbers. The original presentation called the notation LAMBDA and its denotations in 

pay are actually simple enough that they can be stated in a few lines:^

D[[0D = {0}
D[[x + 1 B = { n + l | V n e x }
Df f x - I D = {n|V#i + I e x }
Dftxiby, z D = {n e y|0 e ^  {n e  z|3m./n + 1 e  x}

D[[x(y) D = {m\3enQy . ( n , m ) ex}

D([ A.x.£]] = { ( n , m ) | m e £ [ « / x ] }

Here the denotations of syntactic structures in the LAMBDA language are given in terms 

of set-theoretic expressions. The conversion rules =>a , =>n and =>c in the A.-calcu

lus can then be understood in terms of relating the set denoted of the left-hand side to the 

set denoted by the right-hand side. For example (Xx.M)N=>p [N/x]M  denotes the 

relationship D\[ (kx.M) N  [J =>DI p D D([ [N/x] M H. Computation by functions express

ible in the A.-calcuIus notation is thus related to the manipulation of (infinite) sets through 

a transition relation.^

Though the LAMBDA notation and the underlying model theory are largely orthogonal

1. In fact Stoy [673] points out that either body of work can be understood independently of the other.
2. The domain p  <o could also be written 2U however that usage is not traditional. Further however, there are 
various flavors of powerdomain constructors [301]: the upper powerdotnain <puia. the lower powerdomain 
p(to and the convex powerdomain p cw. These identify computations which may fail, may succeed or which 
are unique respectively.
3. From Stoy [6731. page 123.
4. This offers the interesting possibility of analyzing computations in LAMBDA by constructing a data 
structure that allows for the representation of the sets denoted by A.-terms and the manipulation of them as 
the transitions denoted by reduction rules such as =*p. In a loose sense, the semantics of 2-adic integers. -Z , 
and the 2Z language, which is reviewed Section 2.3.2can be seen as a application of this idea.
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the two are intrinsically tied: the model-theory gives justification to the techniques and 

tricks-of-the-trade used in defining semantic structures (valuations, continuations, stores) 

in terms of the X-notation. The semantic structures of interest in the original denotational 

approach were primarily deterministic sequential computations. Later additions to the the

ory produced powerdomains which model different kinds of bounded nondeterminism and 

resumptions which model concurrent interleaved execution [5451 [3091 [534].

In the denotational theory, the definition of a function is extremely basic, being simply a 

set of pairs relating inputs to outputs:1 /  = { (m, n) \m = / ( n ) }. One could equivalently 

write (m, n) e /  thereby expressing /  in the style of an infinite transition relation. This is 

mostly a stylistic observation however because in the theory, all of m . n , the pair (m, n) 

and even /  itself are shown to exist through an isomorphism as elements within fp to 

itself. Of deeper interest in the treatment here is the characterization of the semantics of 

programming languages in terms of the computable functions which necessarily entails 

notions of approximation and fixed points. These aspects are returned to in greater detail 

in Chapter 3.

One can trace a path of subclassification within theoretical semantics through Berry’s 

stable functions [741, Vuillemin or Milner's sequential functions [709] [530] and finally 

Berry and Curien’s sequential algorithms [80]. This last subclass of computable functions 

is interesting because the sequential algorithm model makes explicit the aspects of control 

thereby establishing a connection with an operational definition. In fact Berry and Curien 

point out that the class of semantic maps expressible in the sequential algorithm model 

can properly be called interpreters for their respective language. These developments pro

duced finer subclassifications of the computable functions and reestablished a connection

1. This expression is a slight abuse of notation. It is substantially correct (c.f Stoy [6731, page 118) but 
glosses over some significant aspects in the definition of functions. This inaccuracy is remedied in the 
description of the finer properties of p  m in Section 2.2.6. That a function is but a map relating inputs to out
puts is a sufficient characterization at this point.
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with the operational framework. *

The whole denotational theory rests on the use of computable functions. This has the 

unfortunate effect of preventing the use of nondeterminism in conjunction with fairness 

constraints to combat the state explosion problem. The technical aspects of p a  that pre

vent from it handling fairness are described in greater detail in Section 3.2. Intuitively 

however, the problem is that computable functions are defined as the upper bound of a 

series of finitary approximations and fairness constraints are fundamentally infinitary rela

tionships: fairness is discontinuous in the infinite limit Despite this fundamental model- 

theoretic limitation, the denotational theory is rich with techniques for specifying the 

meaning of languages and many of the techniques developed within it have been adopted 

in this work. This point is returned to in the next chapter.

The Oxford School

The original presentation of denotational semantics has become known as the “Oxford 

School.” In that style of presentation, the meta-language LAMBDA is very simple and the 

^.-notation is used directly. As the A,-notation is extremely low level, the specification of 

even simple concepts become quite voluminous. The Oxford School is characterized by 

the use Greek characters for variables denoting well-understood semantic structures such 

as environments (p), continuations (9), and the like. Layered on top of LAMBDA is a 

sort of policy or style guide describing how semantic definitions ought to be written. 

Much of Stoy’s book [673] is devoted to explaining this style. In the realm of automation

1. In a sense one can phrase the need for these subclassifications as follows: not all computable functions 
can be computed by in a stable or sequential regime. Or: not all computable functions can be computed by 
the usual practical means.

For example in the case of sequential functions. Milner [530] showed that a model with objects which are 
not sequentially-deflnable is necessarily non-abstract. The trivial example cited is the “parallel or" function 
(por)  which has the map por (it, ±) = por(±,t t)  = tt and por(ff,ff) = f f .  The function por i snota  
sequential function even though it is a computable function. Similar examples exist for stable but non
sequential functions and for computable but non-stable functions [74].
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of the denotational method, various subsequent investigations gave conditions for the 

identification of “obvious” semantic concepts such as global variables and stack-based 

environments [638] [594] in a denotational semantics. Requiring major algorithmic analy

sis to identify these items represents a serious limitation of the pure approach.

Two-Level Approaches

In response to this limitation, a number of two-level approaches were proposed [558] 

[594]. These attempted to separate the static semantics, structures that could be found at 

compile-time, from the dynamic semantics, structures that must exist at runtime. Among 

these can be distinguished the Abstract Semantic Algebra (ASA) approach of Mosses 

[5431 [544]. Central to the ASA approach is the observation that standard denotational 

semantics descriptions in the /.-notation are too concrete because they intertwine the 

details of the model of computation with the actual behavior of the program. Thus, imple

mentations resulting from such descriptions tended to look like interpreters for the X-cal- 

culus more than anything else [620] [621] [6731.* It is interesting to note that even 

applications of standard denotational semantics techniques to the domain of hardware 

design have succumbed to this effect; Johnson's language Daisy [407] and later projects 

[408] or Leeser’s language HML [466] [467] being most obvious in this regard.

In response. Mosses proposed Action Semantics as the notation for abstract semantic 

algebras. There the atomic actions are interpreted as consuming or producing values or of 

having side effects on another structure. The details of the underlying model are organized 

and abstracted onto the (finite) set of actions which then become the sole focus of dis

course. The set of actions is chosen to expose the fundamental concepts of the subject lan

guage. In a sense the actions can be seen as the rudimentary notion of an abstract 

instruction.

1. In Stoy [673] the particular comments in Chapter 13, page 321 on how a non-standard semantics is 
defined operationally on an abstract machine
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High Level Semantics

Taking the two-level approach of action semantics one step further, Lee [4731 proposed 

High-Level Semantics as a means of preserving the underlying mathematical basis of 

denotational semantics. His goal was to use the denotational approach while at the same 

time introducing enough structure that automated code generation techniques could be 

applied to the ordered elements of the action algebra. The result was the MESS system 

which demonstrated that it was possible to automatically produce compilers from seman

tic specifications on a competitive basis with hand-coded versions.

Of interest here is Lee’s notion of semantics engineering which corresponds loosely to 

the notion of computational semantics to be defined in Chapter 3. He posited that there 

was a class of endeavor combining the study, relative to semantic specifications, of engi

neering, philosophy and implementation. He interpreted engineering in the sense of the 

software engineering of semantic specifications, philosophy in the sense of understanding 

what is good, clear and proper in a semantic specification, * and of course implementation 

in terms of the pragmatics of building compilers for languages based on formal specifica

tions. The MESS system was to be interpreted as a preliminary framework for conducting 

investigations in this field.

Also of interest to this work is Lee's two-level structuring of the semantic specification 

of languages by a Principle o f Separation into a macrosemantics and a microsemantics. 

The macrosemantics described the compile-time relationships while the microsemantics 

governed the runtime aspects. Lee’s significant contribution was that the macro-to-micro

1. It should be noted that from an adoption standpoint, computer languages are a “lifestyle issue” (c.f  the 
introductory comments in Stoustrup [672]). As such, their analysis and criticism is often reduced to 
extended polemics [279] or theatrics [Coo95]. Reasoned approaches to analysis and criticism have included 
the extended thematic comparison and contrast essay [348], survey and categorization in a universal frame
work [635], exposition of design decisions and evolution in historical context [672], information model 
analysis [304] [305] or the application of complexity measures from information-theoretics [671] or from a 
socio-engineering perspective [475].
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boundary was governed by the signature of the action domain algebra such that different 

microsemantics could be substituted depending on the implementation domain. The tangi

ble representation of this boundary layer was an internal representation consisting of Pre

fix Operator Terms (POTs). The use of the prefix-based form in the internal representation 

set the stage for the use of a Graham-Glanville code generator [289] [2901 as one of the 

possible microsemantics. The scheme is shown in Figure 2-2. ̂

Microsemantics

Machine
CodeText

Macrosemantics Simulator Abstract
MachineASTs POTs

Abstract
Syntax
Trees

Values 
in (jco

Figure 2-2. The Two-Level Approach with Prefix Operator Terms

2.1.3 Operational Semantics

The operational approach specifies the semantics through a structure and a set of rules 

for computing on that structure. The finer distinctions are made along the lines of the con

creteness of the structure and the rules. On the one extreme is the interpreter approach 

where the structure is an actual machine and the rules for computing are called instruc

tions. On the other extreme the structure is a system of symbolic terms and computing is

1. Adapted from Lee [4731, page 70.
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represented by a set of rules that rewrite the terms. Both extremes are in active use though 

the more abstract term rewriting approach tends to be applied in settings where a mathe

matical basis is needed (the proofs being given by structural induction over terms).

Operational language definition has been in use since the earliest days of programming. 

In some sense it is the easiest to understand as the machinations in the source language are 

defined on a low-level machine that couldn’t possibly be misunderstood. Operational def

initions have been used as the primary definition mechanisms for a number of “real” pro

gramming languages. Oft-cited examples are Algol68 [7041 and PL/1 [7161-

Interpreter- Based Semantics

The normative use of interpreters is the definition of some sort of standardized abstract 

architecture that is suited to the underlying goals of the language. Such goals have 

included portability as is the case with Pascal [723] or more recently Java [676], or peda

gogical rigor as is the case with Landin’s SECD machine for the A.-calculus [460] or 

Cousineau et a l 's Categorical Abstract Machine (CAM) [217] for ML [675]. At the 

extreme of the interpreter-based approach are the so called meta-circular interpreters 

where the definition of the interpreter (defining the meaning of the source language) is 

given in terms of the source language itself. Examples of this can be seen with Lisp [5111 

and later Scheme [668].

The major criticism against the exhibition of an interpreter as the semantic basis for a 

language is that there is little or no connection between the source language and any math

ematical model of computation. In defense of the method one can point to Landin’s SECD 

or the more recent CAM as instances where there is a strong connection with an underly

ing body of theory which has been abstracted and made operational. In fact, Lee’s POTs 

can be seen in this same light, being a sort of halfway point between the source language 

and an abstract machine that interprets POTs. The “POT machine”1 is operationally
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defined yet is associated with Scott’s theory of monotonic continuous functions over p  co 

by virtue of the microsemantic definition in terms of the Annotation.

In defense of the interpreter-based approach, interpreter-defined languages have been 

used as the basis of specifications for hardware synthesis. Johnson [4071 used this 

approach in defining Daisy as a notation for specifying the behavior of systems for syn

thesis into digital logic. In that work, systems of recursive applicative functions are trans

formed to suppress the explicit recursion through a process called lifting. The lifting 

transform associates the recursive calls with latches thereby separating the current invoca

tion of the function from the previous invocation; the value from the previous invocation is 

stored in the latch.

Natural Deduction Semantics

At a more abstract level the operational approach has taken on the aspect of term rewrit

ing. In Kahn’s [416] natural deduction semantics of programs, a relation E=>V which 

associates program fragments E with values V in some domain.* The operational seman

tics axiomatizes the relation => by expressing the computation in the form of deductive

inference rules. To express that £  evolves into E  the inference notation is written as 
£=> V

y  meaning '‘if we wish to infer £  => V then we must first prove £  => V Here £  

is at once the program state and the program continuation as appropriate to the task at 

hand. This form has become known as the “big-step semantics.” It has the advantage that 

terms £  are associated with values V in an underlying domain.

An earlier version of this method proposed by Plotkin [596] had the evolution of a pro

gram be given according to pure rewrite rules of the form £  -» E . This form has become

I. Yes, the joke has already been made. c.f. Lee [473], page 71.
1. In more complete presentations the relationship is stated as wl v  characterizing the state(s) W in 
which the rule applies.
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known as the “small-step semantics.” The definition of the relation -> suppresses the 

association with any underlying value domain. As such some have questioned the mathe

matical basis of the method. On the other hand, the relation ->• defines how the computa

tion must proceed: a computation is legal if and only if the state transition from E to E  is 

defined in the relation Said written differently, the computation is legal if and only if 

(£ ,F )  e

Abstract Machines and Internal Representations

Further work in this area has concentrated on automating the operational method. One 

of the earliest was Despyroux’ Typol system [231] which was able to execute the core lan

guage of ML given a description of its operational semantics. Hannan and Miller [3291
E=>V

defined conditions under which the big-step rules g ^ y  can be transformed into the 

small-step form E  -> E . In their technique the big-step semantics defines the meaning of 

the program in a mathematical sense. The small-step form constitutes an operationally- 

defined target language which is as an instance of Wand’s [714] semantics-directed 

machine architecture. This view has been accepted to the extent that a Plotkin small-step 

semantics is often referred to as but an elegant and expressive shorthand for an abstract 

instruction set or Internal Representation (IR) [523]. Extending this thread, Hannan [328] 

has since provided an automated method for extracting the IR from the small-step opera

tional semantics description. The Non-Deterministic Abstract Machine presented in 

Chapter 7 can be seen as an instance of such a semantics-directed architecture.

2.1.4 Focus

The three genres of semantic specification on the surface seem to have a very disparate 

nature. However, as the preceding sections have shown, under the surface, there are sub

stantial similarities. In a sense, this is as it should be since all three address the same fun

damental problem. The similarities are reviewed in this section along with two comments
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on the lessons that have been learned in developing and using semantic specification tech

niques.

One of the first similarities that can be seen is the cross-use of definitional mechanisms 

among the three. For example, within the axiomatic paradigm one speaks of defining the 

deductive axioms that express computation in terms of an operational transition relation. 

Within the operational paradigm, one speaks of axiomatizing the relation => thereby 

expressing operational semantics in terms of axioms! In addition within the denotational 

method, the semantics of ^-computations are expressed in terms of rewrite axioms on the 

lambda notation. These rewrite rules can be at once considered the axioms of computation 

or instructions on a SECD-type interpreter machine.

At a deeper level however, the similarity among the three paradigms reaches even fur

ther. At a fundamental level, all three express behavior in terms of a transition relation in 

some way. An axiomatic semantics is said to define computations in terms of an opera

tional transition relation, a denotational semantics defines computations in terms of func

tions as a set of pairs relating inputs to outputs and an operational semantics, in the small- 

step sense, defines computing in terms of a relationship -» describing how the system 

state evolves over time steps. This is more than just being a poetic observation or a com

mentary on the redundancy inherent in semantic formalisms. Relative to the class of sys

tems of particular interest in this work, i.e. finite-state synchronous systems, it is 

significant because there exist powerful methods for representing and manipulating very 

large transition relations.1 Indeed significant progress in automated techniques for verifi

cation based on the manipulation of transition relations. The application of these tech

niques is the subject of subsequent chapters.

1. The reference here is to Bryant’s OB DDs and implicit methods. Exposition of their use in the verification 
setting is deferred until Section 3.3.4.
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There are also some practical lessons that can be drawn from the range of semantic 

specifications. One of these is that semantic specifications for languages tend to be com

plicated (or more properly, they tend to become complicated as they evolve over time). 

Without some structuring in a software engineering sense, these specification can be so 

complex that it is hard or impossible for humans to comprehend them, let alone being pro

cessed by automated tools. This effect has been shown most forcefully by Lee. Fortu

nately, he also convincingly demonstrated how to remedy the problem by applying a bi

level specification approach. Thus lesson learned from high-level semantics is that “there 

should be a middle,” and that the intermediate level can be designed an intended use in 

mind. Lee’s intent was the application of a specific code generation scheme. The domain 

here is in the forward and backward image computations F  {Q) and B {Q }  used in for

mal verification by language-containment. The middle in this work is the Non-Determin- 

istic Abstract Machine (NDAM) which is presented in Chapter 7.

The operational paradigm has drawn from the bi-lcvel approach as well in attempting to 

automate the generation of the intermediate level. In focusing on procedures for deriving 

IRs from semantic descriptions the IR design problem has been transformed from that of a 

craft drawing from a body of known tricks and best-practices into a scientific or engineer

ing endeavor. The focus on automatability here is therefore pedantic* with the interest 

being that the IR generation task can be automated rather than how best to go about that 

automation. The pedantic view being that a problem can only be said to be well defined 

when the correctness and optimality conditions are posed concretely enough that it can be 

subjected to an algorithmic solution.

1. This is to say that the Non-Deterministic Abstract Machine (NDAM) presented in Chapter 7 has the dis
tinction of having been derived by a manual analysis of the problem domain. A comparison between the 
NDAM as presented and one derived from a procedure such as Hannan’s [328] has not been attempted. The 
NDAM design can however be seen as being justified in terms of matching and optimality criteria relative to 
the causally-interleaved MASS computation used in image and pre-image computations.
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22  The Standard Semantic Models

Every scheme for semantic specification consists of two largely separable parts. The 

first is the part that is properly called the semantics. That is the notation used to identify 

aspects of the subject language and relate them to the semantic model. The second part is 

of course the semantic model itself. There are a wide range of semantic models each with 

its own relative expressiveness and associated proof procedures. Some of the more signif

icant and relevant ones are reviewed in the following sections.

The semantic models can be loosely classified into two broad categories: standard mod

els and nonstandard models. ̂  This section and the next respectively review what can be 

considered the standard models and a few of the many nonstandard models respectively. 

Examining the similarities and differences across models is a useful exercise for differing 

proof procedures and implementation methods are implied by each. Such differences are 

especially true of the non-standard models which were originally proposed to exploit 

some specific expressiveness result or address some usage which could not satisfactorily 

addressed in the more traditional framework.

The following sections review five models which have been used as the theoretical basis 

for various verification theories: trace models, process algebras, Petri nets, Kripke struc

tures and the co-automata. In addition the universal domain (p co is mentioned for com

pleteness in this context. Scott’s domain theory is abstract enough and covers a wide 

enough range of applications that, for the purposes of this work, the denotational seman

tics forms more of a recipe for constructing domains with the appropriate internal struc

ture than a direct representational paradigm. Tndeed, the computational semantics

1. The term standard model is used here in the sense of being in common use within the semantics and for
mal verification literature. In the larger theoretical sense many of these models are thought of as non-stan
dard because they are finite or their definition does not distinguish some interesting theoretical structure 
(such as linear versus branching time). In the following sections, such overloading is noted where confusion 
is possible.
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presented in Chapter 3 draws directly on elements of this theory as it applies to multi-step 

transition systems with finite state. Each of the models covered in this survey has been the 

subject of extensive study in its own right so the focus here is on the comparison and con

trast among them rather than an exhaustive enumeration of the theory or results derived 

from any. Of interest in comparison are the means by which each scheme represents state 

and state-to-state transitions. The highlight of this comparison is the observation that for 

practical purposes, all the schemes define state and state-transition systems either implic

itly or explicitly. In contrast are the disparate means by which behavioral properties can be 

specified across multiple macro steps.

2.2.1 Trace Theory

Probably the most straightforward model is the trace theory. This model has the benefit 

of having a direct relationship with the intuitive operational behavior of the system at 

hand. Trace theory was first proposed by Brookes, Hoare and Roscoe [3541 [ 1181 [ 119J to 

provide a model for the Communicating Sequential Processes (CSP) [353] [3551. In that 

context the meaning of a CSP program is given in terms of the communications that it can 

perform as it progressed coupled with the set of terminations and failures that the pro

gram. Rem, van de Schnepscheut and Udding [6191 and Dill [238] have applied trace the

ory to the modeling and verification of systems of asynchronous logic.

A trace is a set of finite or infinite strings that describe the behaviors of the system 

(events) as viewed externally. Typically the symbols in the alphabet of the strings are the 

input, output and synchronization events in which the system can engage. The attraction 

of a trace-theoretic description of behavior is that if the system is of finite state then the 

trace sets are guaranteed to be regular.
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A trace structure is given by:

T  = (1 ,1, O, S, F)
where:

I  is the alphabet of all possible events,

/ c l  is the set of input events,

0 c  I  is the set of output events,

S c  I* is the success set describing good behaviors,

F c  I* is the failure set describing bad behaviors.

The set of possible events is written as P = S u  F . Trace structures are distinguished in 

that they identify not only the successful computations but also the failures. Two trace 

structures are considered equivalent if their success sets are equal and so are their failure 

sets.

A trace structure is called failure-free if its F  = 0 .  A trace structure can be checked for 

failure-freeness by inspection if F  is given explicitly. The failure set is not explicit when a 

trace structure is given in terms of the composition of other traces. Composition over trace 

structures is defined by the intersections of the traces of both systems:

T{ || 7, = 7*, o  T2

= ( I ,  u  I 2, /, r\ l2, 0 , o  0 2, 5, n  S2, (F, n P 2) u ( / , n  F2) )

The class of trace structures most often used in the modeling of systems are the prefix- 

closed trace structures. The prefix set pref(R ) of a set R is given by

pref(R) = {x|Vy e I* axv  e R}

When the sets S and P are both prefix closed, a trace structure T can be interpreted as an 

accurate model of the possible evolutions of a system over time. A prefix-closed set con

tains not only the finite traces of behaviors of a system at time tk but also records all the 

behaviors at instants tj for j  < k . With respect to the set P this implies that if there is a 

v e P then there must also be a x e  P such that x  can be competed to y . Prefix-closed
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trace structures are fundamentally sets o f finite strings and as such they cannot be used to 

model fairness or liveness properties. A second kind of trace structure is the so-called 

complete trace structures [702] which are defined over sets of finite strings and infinite 

sequences in terms of the mixed-regular sets.1 For the most part however, trace structures 

are considered to be prefix-closed and defined over regular sets of finite strings.^

Dill’s contribution was a notion of trace conformance which related the trace sets of 

one trace structure to those of another. The trace conformance relation T{ <c T, holds if 

Ix = 12, Ox = 0 2 and for all environments £[[ ° fl it is the case that £[[ T, fl is failure- 

free implies £|[ T, fl is also failure-free. A decision procedure for checking whether 

Tj <c T2 is given by transforming the conformation problem into the problem of deter

mining whether the composition of T{ with the mirror of Tn is failure-free. The mirror of 

a trace is defined as:

=  (2
where:

/ "  = 0 ,  

s "  = s ,

F* = 2* -  P
Intuitively the mirror operator f W transforms T  into its own worst-possible environment: 

accepts the extremes emitted by T and no more and produces the extreme accepted by 

T and no more. Using the mirror, the conformation relationship can be verified by check

1. Dill [238] defines a mixed-regular set as the union of a *-regular and an co-regular set: l ” = I ’ u Z ” . 
The properties of such structures are essentially those of the ca-regular languages. Kurshan [454] formalizes 
the obvious argument as to why any treatment handling infinite sequences (the co-regular languages) neces
sarily subsumes one handling only finite strings (the ^-regular languages).
2. To ensure that an arbitrary trace properly models the execution of something, some other closure proper
ties are required as well: fusion closure, suffix closure and limit closure, c.f Emerson [2481, page 1014.

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

ing that the miiror-composition is failure-free. Failure-freeness in turn can be can be 

checked through a sort of reachability analysis.

It is natural to view the relation <c as a sort of language containment. This is not quite 

an accurate picture because <c is a pre-order not a partial order. This is because the rela

tion <c is not anti-symmetric: <CT2) a  (J2<cTx) does not imply that T{ = T2.

Rather a weaker relationship holds, that of conformation equivalence which is written as 

7"i ~c T2. Loosely, conformation is a weaker relationship because trace sets have a lot of 

information in them that is wholly unrelated to the relationship <c. An intuition of this 

distinction is that the extra information relates to differences in behavior under failure. 

The fact that trace structures are specified in terms of the success set and the failure set 

provides an extra level of expressiveness that is not found in other linear-time models. Dill 

shows how trace structures can distinguish between two branching-time structures that 

have the same success sets.1 The two trees are distinguished by having different failure 

sets. That example is reproduced in Figure 2-3.

2.2.2 Process Algebras

The fundamental premise of process algebraic models of computation is that a process 

is a concept that is not understood well enough to be concretely characterized. In this view 

there is no general agreement on the model of what a process is. Instead the approach 

taken is to explain what a process can do and thereby derive some understanding of what 

a process can be. Process algebras are the means by which the operational behaviors of a 

process are characterized. A process algebra, as such, is a simple abstract programming 

language which describes the behavior of a process over time in much the same way that 

the L-calculus is an abstract programming language. Terms in the process algebra denote 

processes themselves and the operators of the algebra define behavioral primitives such as

1. c.f. Dill [238], page 54.
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S0= { ab, ac } 

R= (aa+b+c+(ab+ac)(a+b+c))(a+b+c)*

a

b
T I

c

F2= F.+ ab + ac

Figure 2-3. Branching-Time Structures Distinguished by Their Failure Sets 

events, (parallel) composition, sequentiality, hiding and renaming. For a process algebra, 

the existence of a finite set of process variables Pi is assumed as is a finite set of actions 

a f. e Act. The distinctions between the various process algebras comes in the allowed 

operators and their meaning. The syntax of a simple process algebra might look as shown 

in the table of Figure 2-4.1 The semantics of process algebras is given by the possible 

rewritings of the terms in a process expression as shown in the table of Figure 2-5.

There are a wide variety of process algebras, each of which is oriented at highlighting 

some aspect of computation. Of these include:

1. As presented in Milner [534],
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Syntax Description

a.E Prefixing

£ , + £ 2 Summation, Choice

Ex || E2 Parallel Composition

E\L Restriction, Hiding

m
Relabeling by f

Recursion (return j  th)

Figure 2-4. The Syntax of a Simple Process Algebra

• Algebra of Communicating Processes (ACP) [69],

• Algebraic Theory of Processes (ATP) [2261 [343],

• Communicating Sequential Processes (CSP) [353] [119] [3551,

• Calculus of Communicating Systems (CCS) [532] [533], SCCS and ACCS,

• CERcuit CALculus (CERCAL) [526],
• Esterel [79] [811 [2951 [228],1

• LOTOS [114] [3971 [701],
• Meije [36] [227],

• The 7t-Calculus [5351 [536].

At a fine-grained level, all these algebras are different enough that a unifying theory has 

not yet evolved [534], Some algebras require an interleaving semantics, while others such 

as Meije or SCCS provide for a synchronous notion of time. Some algebras provide for 

synchronization among pairs of processes while others allow synchronization among sets 

of processes. Further distinctions are along the structure of the actions Act. For example 

in CSP, Act is merely a set of possible actions which occur singly, CIRCAL uses events

1. More recent developments have moved away from the original focus on the process algebra and event 
derivative interpretation to interpretations based on abstract machines [47] [246] and synchronous circuits 
[76] [257] [525]. A key issue with these more exotic interpretations is their equivalence with the behavioral 
semantics of the process algebraic interpretation.
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Marne Rule Meaning

ACT

a.E % E

After a . the system behaves as E

SUM j
EI% E I

The j  th alternative is selected

COMO

EQ\\El % E 0 ftEl

The process on the left E0 evolves

COM I El % E l

EQ\\El % E 0 \\E l

The process on the right Et evolves

COM2 a a
E0->£o

E j E ^ E o t i E y

Both processes E0 and £ l synchronize

RES
E % E

--------------- (a  e t u i )
£ \z A  E\L

The restriction of the system hiding L

REL
E % E

/ ( a )
E [ / ] -» £ • [ /!

Relabeling E by f

REC
Ej {V.r P E /P \% E j

-------------------------- (j  6 f)
p ..PE% Ej

Recursion over the processes, returning the 
j  th clement of the fixed point

Figure 2-5. The Operational Semantics of a Simple Process Algebra

which are sets of actions while Meije’s action domain is a commutative monoid1 where 

0 x ° denotes synchronization and x is the unit.

1. From topology [4271:
A monad is a structure (M.oxo.x)  over a set M w here o x » is associative and x is the unique null element. 

A group is a structure (C ,» x o . o-i, e ) 0Ve r  a set G w here |G| £  1 . o x o is associative, e is the unique neutral 
elem ent and Vx e  G.x x x -i = e ; a  group is commutative or abelian w hen o x s is com m utative.
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Of interest here is the ability to characterize process algebras in terms of labeled transi

tion systems (LTS). For every process algebra the operational rules, such as those given in 

Figure 2-5, are understood as a labeled transition system:

where:

Q is a set of states.

Act is a set of actions,

S  Q x Q is the action relation.

The action relation can also be written in the form of - > c Q x  Act x Q which is the 

more familiar transition relation. In the general case an LTS is not finite because Q grows 

under Conditions when an LTS is finite have been developed [7081 and this observa

tion forms the basis for the use of symbolic techniques on process algebras [260] [243].

A second point of semantic interest is the notion of equality which is in some sense fun

damental to the process algebra approach. The algebraic approach avoids the explicit 

mention of an underlying model of behavior other than the operational rules of the 

abstract language. As such, some other means must be used to determine if two processes 

are equivalent or whether one is more deterministic than the other one. This is accom

plished through a notion of testing equivalence or observation equivalence which relates 

processes if they can participate in the same set of events and subsequently have the same 

potential for entering deadlock.

The various process algebras distinguish such concept as the necessity and eventuality 

of termination and deadlock. There are various notions of testing equivalence that can be 

defined, at the finest level is Milner and Park’s bisimulation equivalence [580] [5311. A 

bisimulation B is a relation on the states of two systems P and Q which is the coarsest 

partitioning of the states of the two systems such that both partitioned systems can be said
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to preserve the behavior of the other

Va e  Act

P % P = >  3Q. Q ^  Q  a  (F ,  Q ) e  B

3 P . P%>P' a  (F , (2’) e  5

The attraction of bisimulation is that it offers an automated reduction method whereby a 

partial view of the global system can be defined. Presumably a property can be character

ized by some very simple system Q which can be determined by inspection to test for the 

property of interest A verification by bisimulation tests that the system P is bisimular to 

the property Q . Verification tools such Alddbaran [258], Argonaute [501], Auto [99], The 

Concurrency Workbench [198] [199], Xesar [623] and others provide automated means 

for verification from descriptions given in various process calculi. ̂

2.2.3 The Petri Net as a Model

Petri nets [584| [618] are often touted as an representation of behavior which is orthog

onal to that presented in automata theory. This, because of their distributed representation 

of state and activity. The claim is that this distribution allows them to express the so-called 

“true” or distributed concurrency as opposed to the “simulated” or interleaved kind. In this 

sense there is a strong distinction because distributed concurrency is a fundamental prop

erty of the net semantics and it is distinct from the derived concurrency induced by nonde- 

terministic interleaving. Complicating matters also is the fact that there are a wide range 

of subclassifications and analyses which use the Petri net formalism. Only a few of the

1. This is not to suggest that the problem is currently considered to be “solved.” Bisimulation-based verifi
cation suffers from state explosion as do all state exploration methods.
2. Petri proposed the net representation as a means of constructing an asynchronous concurrent simulator 
for a Turing machine [5851 [586]. The nets used in the original presentation are now seen as being restricted 
to safe nets only. As such, the original references are only of historical interest.
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most relevant can possibly be related here.* Of primary interest is the observation that, 

Petri nets, when restricted to have finite state, can be seen as an extension of classical 

automata theory, albeit an interesting extension wherein the state of the automaton is dis

aggregated and a fine structure on the automaton’s transitions can be exploited.

In this development, the Petri net theory is best understood by distinguishing the syntax 

or uninterpreted structure of the net from the semantics of net execution. The syntax of the 

net I  is given as a tuple:

1 =  (S,T;F,K ,M q,W )

where:
S is a set of places,
T is a set of transitions,
F c  (5 x T) u  (T  x S) is the set of directed edges in the net,
K:S -> ( X u  {o)}) defines the capacity (in tokens) of each place,
Af Q:S -> ( X u  {a }) defines the initial marking and Vs s  S.M (s) < K  (s),
W:F -> (X -  {0}) defines the weight of each edge.

Within this broad definition there are many subclasses of Petri nets, each distinguished by 

some interesting property. A few of these classes are useful for modeling systems which 

are constructible in the real world, that is finite state systems.

A net is said to be safe when Vs e S.M(s)  < I . A net is said to be live when every 

cycle in the net has at least one marked place. In a large class of cases, the capacity of each 

place is considered to be unbounded and the edge weighting is irrelevant. Such a restricted 

net definition is given by the restriction to Vs e S. K (s) = co and V /e  F.W(J) = 1. 

Of interest in the presentation here are such nets. Greibach has shown that such a net has 

an equivalent representation as an automaton:

1. The body of Petri net theory is extremely voluminous. The classic introductory works in the field, Peter
son [584] and Reisig [618] list bibliographies of 300 and 500 entries. A recent compilation [598] lists over 
4100 references (reported in Kurshan [454], page 7).
2. From Greibach [303], page 320 as presented in Taubner [682], page 97.

59

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

N =  ( S , T , M 0)

where:
5 is the set of places,

. , ( Sx D u  (rxs) .Acr c 2  is a set of (aggregate) actions,
5  SI c  2 x Acr x 2 is a set of (aggregated) transitions.

For a safe net, this definitional form makes it clear that syntactically and operationally a 

Petri net is a form of automaton1 and edge elements a e  Act are called steps which are 

said to be made up of unordered micmsteps. It may be that within a step, two or more 

microsteps are enabled or that an ordering among the microsteps is required for the net to 

remain safe. Such situations are called conflict and confusion respectively.

The net is said to have a partitioned state in the sense that its state is defined by the 

markings of its places, places in turn denoting the holding (or not) of some condition. In 

the automata-based view, the net is said to have a distributed transition relation which is 

defined by the aggregation of edges (or firings to use the net parlance) that are involved in 

some a e  A ct . Taubner [682) used Petri nets of this form to show transformations from 

the CCS and TCSP process algebra formalisms. This established the limitations on the 

representation of programs in those formalisms in terms of automata and nets.

The Petri nets are not really a model per se; they are a (network) structure. As such, 

semantics of Petri net execution must be defined by other means. Primarily the semantics 

is defined operationally through a firing rule that describes when a transition is enabled 

based on the presence of tokens at its inbound places. Other forms of semantics have also 

been attempted. Nielsen, Plotkin and Winskel [5601 showed a relationship between Scott’s 

topologically-defined domains and event structures on a class of Petri nets called occur

rence nets. Mazurkiewicz developed a semantics for Petri nets based on traces [509]

1. The automaton need not be a finite automaton as the number of tokens in a place is unbounded in the gen
eral case.
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[510].

There is active interest in Petri nets in formal verification where they fall under the 

rubric of partial order methods. This is because events that are not causally related are not 

associated in the formalism. The partial order is the causal relation among events with 

£j < E2 if and only if E{ is said to have caused £ 2 . The interest in partial orders lies in 

the possibility of exploiting the independence of concurrent activities under composition 

to combat the state explosion problem. There is a fairly large body of work on the abstract 

semantics of partial orders [457] [605] [722]. More recent work has concentrated on prac

tical applications. In one such case a reduced automaton was extracted from a Petri net 

subclass called a safe P/T net. This automaton was then used in a trace-based language 

containment [292] decision procedure. In another example, Neilsen et al.'s unfolding pro

cedure was extended with stronger truncation conditions and used to verify a distributed 

mutual exclusion protocol [518]. Both cases exploited the partial order nature of the Petri 

net to avoid state explosion.

2.2.4 The Kripke Structure

The temporal or Kripke structure [4431 was presented in Chapter las Mk = «2,r,<l>) 

with a set of states Q , a transition relation T and a labeling O which associates a set of 

atomic propositions with each state. In the strictest sense, a Kripke structure is not a model 

because it does not distinguish between two theoretically interesting interpretations of 

lime: linear time and branching time. In linear time each time point contains exactly one 

successor point. Linear time corresponds to a description of a computation in terms of an 

infinite string. Under branching time on the other hand, each time point has two ore more 

successors and computations are interpreted as infinite trees.

In the context of verification, and in particular the verification of finite-state systems, a 

Kripke structure is viewed as the “wrapped up” and finite representation of the actual
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model. The Kripke structure can be seen as a generator for elements in the temporal 

model. * It also has a convenient and obvious analogy with the constraints on the systems 

being modeled: finite state reactive systems in hardware and or software. The strong point 

of interest here however is that proofs carried out on the structure, interpreted as a non

standard finite model, are known to be valid on the infinite model.^ Both the linear time 

and the branching time view have their place. At one point there was debate as to which 

was better [458] [600] [250] though the current view is that the two views are complemen

tary, each offering its own advantages and disadvantages [188]. The fact that a Kripke 

structure can be used as a generator for both kinds of models has been an important fea

ture in practical verification schemes [359] [362].

A Kripke model is a so-called “possible worlds” semantics. In such a system, truth is 

dependent upon the world in which it is evaluated. Further, the truth of a formula (p denot

ing truth in a world q{ is understood to depend, in a syntax-directed way, on the truth 

denotations of subassertions in other worlds accessible from q( . In practical applications 

the “worlds” are really the states of the system, and each state q e Q is its own separate 

world. The transition relation T defines the accessibility relation between different 

worlds. Distinctions between various classes of Kripke models are then made according to 

what kinds (or modes) of truth are representable in the model.

2.2.4.1 Linear Time

A linear time model for a Kripke structure MK = (Q, T, d>) is given by:

1. The term Kripke model is often used interchangeably where the structure of time (linear or branching) 
has been stipulated.
2. A survey of the theoretical basis behind this is given in Thomas [684] and Emerson [248].
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M SI S  -

where:
Q is a set of states,

<t: X -> Q is an infinite sequence of states,
AP0 :Q  -> 2 is a labeling of states with atomic propositions A P .

In the linear time framework, time is of course discrete and each point in time has a one- 

to-one correspondence with some natural number. Each natural number is associated with 

some state q e  Q and therefore elements in the model are infinite strings of states 

<t = qQq [q2... 6 0 ° .  At an even more primitive level, a linear time Kripke model is 

given a model-theoretic interpretation in terms a system,

a  = 0, succ, <, ( Q J a e Z )

where, for all a e  I  the set Qa are the positions containing the character a which is writ

ten Qa = { /e  co|a(. = «}.

Linear time is distinguished in that it possesses one sort of modal truth. The sequence of 

integers a  there is only one possible successor: in a to -word, for any given i , the only 

possible successor / + I . This corresponds to an interpretation of computations in MSIS 

in terms of sequences of states <j  e  Qa which are called rims. Any statement about runs a  

is implicitly quantified with the sole modal operator V, meaning “for all paths in MSIS."

The interpreted second order theory of one successor (SIS) defines properties in terms 

of formulas (p .* The theory is second order because the quantification is over sets of ele

ments rather than individual elements as is the case in Floyd-Hoare logic. The “one suc

cessor” comes from the interpretation of computations as runs a . The central decision

l . The exact constitution of formulae in S IS is not of direct interest to the development here, the reader is 
referred to one of the tutorial presentations such as Thomas [684] or Emerson [248]. The major thrust of 
Buchi’s development was that an automaton <p D can be used in decision procedures. Thomas [684], page 
145. outlines an explicit construction relating <p e 51S to fl[[ <p D. as does Buchi’s original presentation 
[131].
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problem of the theory is whether a  is a model for cp; this is written as a  (= <P- Biichi 

[131] showed that any statement in SIS can be rewritten in terms of sequences accepted 

by a class of © -automaton. This class has since been dubbed the Biichi automata. This 

result means that formula in S IS can be dispensed with for practical applications: for any 

tp e  SIS one can work exclusively with the implied automata Btf <p fl.

A Kripke structure MK can be used as a generator for elements of MSIS by interpreting 

Mk as an automaton (say a Biichi automaton or an L-automaton). Then each run a  in the 

automaton, implies a corresponding sequence of labelings T , where 

T = <D(q0) d>((j2) ... e  (2AP)“ . The sequence T carries with it the information

about the run ct for the atomic properties in AP. The set of all sequences T defines the 

language of the model Msls and thus the language of the Kripke structure MK.

A decision procedure for checking that MSIS, crf= cp was first suggested by Vardi and 

Wolper [706]. The idea is to treat the Kripke structure MK as a generator for elements of 

the linear time model MSIS and understand that as a Biichi automaton with the language 

L (A/515) . Further, the formula cp, when expressed in Linear Time Temporal Logic, can 

be transformed into a Biichi automata as well. The formula (p can be said to denote the 

language of its corresponding Biichi automaton L(B[<p]]).  The decision procedure 

answering whether MSIS> af= <P is then redefined to the problem of answering whether 

L (Mk) c L(B\[ cp []). This is co -regular language containment problem. The co -regular 

languages are closed under complementation this question in turn can be transformed to 

the question of whether L(MK) n  L(B|  <p fl) = 0 .  This is directly computable as 

l (^Mk x fi[[ cp J]j = 0  given the “complement automaton” BJ tp D. This scheme is 

called language containment and the decision procedure is called the language emptiness 

problem.

Subsequent research has investigated how to approach the automata complementation

64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

problem. This has been shown to be extremely difficult for Biichi automata requiring time 

in O (2nl°8") [6331 [2521. Kurshan’s contribution [4491 [454] was the definition of a class 

of automata, the L-automata, in which the complementation step is trivial, being a syntac

tic operation on the acceptance criterion for the automaton. The problem remains 

PSPACE-hard in the general case as an FSA intersection problem must be solved.

2.2.4.2 Branching time

A branching time model for a Kripke structure MK = (Q, T, O) is given by:

The infinite model MS1S is created from the finite structure MK by unwinding the struc

ture according to the following rules:

• for the start state q0 e Q then (qQ, 0) e Q,

• for (q, n) e Q then { (q\ n + I) |V<?'. (q, q') e  7} c

• for {q, q)  e T  then 3n s  K. ( (q, n), (q\ n + I)) e f ,

• <*»((q,n))  = ^(<7) •

The unwinding of MK into an infinite tree MS2S is as shown in Figure 2-6. * In the branch

ing time framework, time is discrete as before. The distinction is that time has a branching 

tree-like structure governed by the relation T. Each path in the tree has a one-to-one corre

spondence with the natural numbers, exactly as is the case with the linear time case. Suc

cinctly, the difference between linear time and branching time is that in the branching 

case, each point in time has multiple possible futures but only one past

1. From Emerson [2481, page 1013.
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where:

Q = Q x K is an infinite set of states, 

T c i Q x Q  is an infinite transition relation,
A . AP
cD: Q -» 2 is the labeling function.
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Af, M S2S

m o

S l,l S2,l

SO,2 SI, 2!

S U S2,3

Rgurc 2-6. The Unraveling of M ^  into the Infinite Tree A/5 2S

At an even more primitive level, a branching time Kripke model is given a model-theo

retic interpretation in terms of the infinite binary tree. The tree is understood to be over the 

alphabet 2 = {0, I } ” with each node in the tree being marked with a character a e 2 . 

The bits of the character a are understood to denote whether p t e AP holds at that node. 

The character of a tree node is written a = t (w) for a word w e  {0, 11 * and a bit within 

the character is written a- = t{ w ) ..
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Formally the tree structure is given as:

f2 = (  [0,1 }*, s , succq, s u c c <, P x...P^j

where:
succQ(w)  = w • 0 and succx (w) = w- 1,

< is the proper-prefix relation over finite words w e  {0 ,1 }*,

the properties Px...Pn are subsets of ( 0 , 1}* and w e  P. when r(w) = I.

The second-order theory of two successors (S2S) defines properties over such tree 

structures as t2. The primitive binary structure t2 can be generalized to bounded fanout 

trees tn where there are n successor functions succQ...succn l . The theory even 

extends to trees with uncountable fanout tm. These extensions give rise to theories SnS 

and Sco S respectively.

The decidability of S2S is given by the Rabin Tree Theorem [610]. That theorem states 

that MS2S, q0 f= tp is decidable. The theorem is proven by converting tp to a special kind 

of tree automaton1 called a Rabin tree automaton *  [ <p fl. Thus MS2S, qn is a model for 

cp if and only if that /?fJ  cp fl has an accepting run. The class oflogics where this prop

erty holds are said to have the “tree model property.”

The most practical application of branching time has come with the Computation Tree 

Logic (CTL) of Clarke and Emerson [2491 and its many extensions such as CTL* and Fair 

CTL. The syntactic composition of CTL and CTL* are given in Figure 2-7. The seman

tics, as defined by the “is-a-model-of ’ relation M ,x  h  9 , is shown in Figure 2-8. The 

important aspect of CTL is that the path operators E and A are defined in terms of a fixed 

point computation [1841. As a result, model checking for CTL can be done in time linear

1. A tree automaton has a transition structure T c  g  x Z x ( Q x Q).
2. As with S IS. the exact constitution of S2S is not of direct interest to the development here. The tutorials 
by Emerson [248] and Thomas [684] review the deeper aspects of the theory and the various classes of tree 
automata.
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in the size of the model and of the formula, 0(|Af||(p|). Later, Clarke, Emerson and Sistla 

[185] showed how model checking for CTL can be performed using breadth-first search 

and the identification of strongly-connected components. The significance of the fixed 

point computation and the use of strongly-connected components is that they are straight

forward in a second-order p-calculus framework.

Later additions to the logic added fairness constraints [254] [255] by defining the 

unique operators A0 and E^ for each fairness constraint d>.. The operators only hold 

on paths where the condition <t>{. holds. Most recently, Burch, Clarke, McMillan, and Dill 

[136] applied symbolic methods using OBDDs to the model checking problem.

Class Rule Inputs Syntax

SF St p e AP Each atomic proposition p e A P

SF S2 p v pz e S F p l A p 2 , Pl v p 2 , -,p

SF S3 p e PF Ep , A p

PF PO p v p2 e  S F X p .  p tU/7,

PF PI p e S F All state p  formulae are path formulae

PF P2 p v pz e P F p l * p 2 , p l v p 2 . - p

PF P3 p v p2 e P F X p .  p lUp2

AP  - atomic propositions 
SF  - state formulae 
PF - path formulae

Figure 2-7. Syntax of CTL and CTL*

The issue of branching time and temporal logic is presented here for completeness. * 

McMillan [518] describes symbolic methods for model checking in branching time CTL
9

in detail. Of interest here is the definition of branching time semantics and its relation

ship to the model checking decision procedure M,q 1= (p. McMillan’s SMV system is

1. The idea of temporal logic originated with Pnueli [599] [61].
2. Further related work which applies OBDD methods to verification problems is reviewed in Chapter 7.
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Rule Inputs Syntax

SI p eA P ■SI M ,?o |= P l = pe<D(?0)

S2 p e P F SIT M,q0 ^ p { a/>2 J = 5 |  Af,?0 f=p, 1 a S [  M,qQ\=p2 U

•SI M,qQ\=pl v p 2 l = SI M,qQ\=pi ] |v S | A/,<?0 (=p2 D

SI M.q0 ^ - , p  |  = -,S | M,q0 \=p$

S3 p 6 PF SI M,q0 Ep I = 3q e  Qa .P l M.q |=p I

SI M, <j0 h  Ap 1 = Vq e Q“ -PI Af, q f= p fl

PO p ,,p , eS F PI M, q p t U p2 ] = 3/ 6 <D.(si Af, q{ (= p2 D a  Vj e  cd.(/ <j a  SI Af. qj [= p2 q))

Pi M.q ^  X p l = PI (=pl

PI p e S F P l M ,q \= p l  = S I  M,q0 \=p I

P2 p v p2 e P F PI Af, q p, Ap2 ] = PI Af, q |= p , \  a  PJ Af, q [= p , J

P I M.q f=pt v p , I = P I M.q  |=p, J v P I  M ,q\=p2 l

PI A f ,?f=-pJ  = ^PI M.q f=p I

P3 Pi'P2 e PF Same rules as for PO except that p v p-,e PF instead of p,, p , e SF

CTL is generated by rules SI, S2, S3, PO, PI, P2 
CTL* is generated by rules S1, S2, S3, PI, P2, P3

Figure 2-8. The Semantics of CTL and CTL*

most illustrative in this regard. In that system, the SMV language is used to describe the 

system and its fairness constraints while CTL is used to describe the property to be 

checked. The semantic transformations are illustrated in Figure 2-9. The key point of that 

figure is that the semantics of SMV programs is defined directly in terms of a Kripke 

structure. The model checking procedure processes this structure on the formula cp in a 

syntax-directed fashion. *

22.5. The co-Automata

The co-automata model directly implies the use of language containment as the prop

erty-checking procedure. The language containment proceeds from the premise that any 

system which accepts inputs or produces outputs has an automata-theoretic interpretation

1. In fact the denotational semantics of SMV constructs a Kripke structure directly. The semantics concen
trates directly on constructing the transition relation T  from syntactic terms in the language.
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CTL
Formula

SMV
Program

OK?
FAIL? 
Error Trace

Branching Time 
Model Check

Figure 2-9. The Branching-Time Semantics in SMV

as a generator or recognizer of a language [368]. In the case of a Finite State Machine 

(FSM), the input/output patterns, under an ordering, can be thought of as the bit-level 

encoding of a symbol in an alphabet. The alphabet I  is then the set of bit vectors of length 

m + n from the set Bm + n for an m input n output FSM [439]. An FSM S can be spoken 

of as having a language as denoted by L(S)  which is the set of all possible input/output 

sequences allowed by the machine. The co-automata are recognizers for languages con

sisting not of finite strings, but rather of infinite sequences.

Languages are set-theoretic objects, being sets of strings, or sets of sequences in the 

infinite case. The concern with co-automata is exclusively with the infinite case, as reac

tive systems are considered to run forever, and clearly the finite case is subsumed by the 

infinite.1 The ©-regular languages [171] [687], the languages accepted by the ©-autom-
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ata, offer the most natural model for the behavior of reactive systems which never halt 

Finite or infinite, a language is a set, and as such it is possible to speak of one language 

being larger, smaller, equal, or being unrelated to another, just as one can for any other 

kind of se t Such sets are finite so it is possible to speak of the complement of language:

i  = T.a - L

The idea of language containment [706] [449] comes from the formalization of a verifi

cation problem as the query of whether the language of the system L (S) is contained in 

the language of some property L (Af) :

L(S) cL(A f)

The query asks whether the (generated) behaviors of the system S  are smaller than the set 

of behaviors allowed by the monitor M . It is not possible to decide this directly as both 

L (5) and L (Af) are rather large sets of infinitary objects. A related expression provides 

the answer via the complement language. The decidable query is:

L(S) n L(M) = 0

This quantity can be computed directly so long as the product-machine operator x is 

modular. That is, it must preserve the property that the language of the product is the inter

section of the languages:

L(Af,xM2) = L(Afj) n L ( M 2)

All that is needed is a representation for an automata Af, that accepts the complement lan

guage L (AT) defined as follows:

L(M ) = LjM ) = ! “ -£ ,(  M)

The original containment query is then decidable according to the emptiness of the lan

guage of the product with the complement automaton:

1. In fact, though this is somewhat obvious, Kurshan [454] spends some effort explaining this.
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L (S x M )  = 0

This problem has been traditionally called the emptiness o f complement problem. The dif

ficulty of the complementation step varies according to the sort of automata that is used. 

The emptiness of the product is however known to be PSPACE-compIete. * For language 

containment to be a useful decision procedure in design verification it remains to identify 

a scheme under which the (structural) product-machine operator guarantees the language 

intersection property and where the complementation of the co-automaton M  is in some 

sense easy.

The L-Automata

Finite automata recognizing finite strings (the *-regular languages) [368] have but one 

acceptance structure that defines the language accepted by an automaton. That structure is 

the familiar set of final states F  where a Nondeterministic Finite Automaton (NFA) M  is 

given by:

M =  (Q,Z,T,[,F)
where:

Q is a finite set of states,

I  is a finite alphabet of input symbols, 

r c g x X x Q i s a  transition relation,

/  c  Q is a set of initial states,

F c 0  is a set of final states.

A finite string s e I* is said to have an accepting run pi(g) in M in the case that the 

string finishes with the automaton in one of the final states. This run of states is denoted:

V-M (5) = (<7; 6 <2|<7o 6 I A {qp sp qi + ,) e T a  qn e  F}

1. FSA Intersection for the finite case has been shown to be PSPACE-compIete: [2781 problem AL6. The 
same complexity is attributed to the infinite case as well: [454] section 8.2.
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For the finite case, Af, the automaton accepting the complement language is derived from 

Af in a straightforward fashion. L(M ) is simply the set of strings with runs in Af that do 

not finish at a state qn e  F. Thus Af is defined in terms of Af by complementing the set F 

with respect to the set of possible states:

Af = (Q, Z ,T ,I ,Q -F )

The infinite case is not nearly so straightforward. The notion of a run p (q) must be 

generalized to an infinite vector q of states where (clearly) some states must appear infi

nitely often. The various classes of co-automata are distinguished by how the accepting 

states are specified.

The obvious generalization of the finite NFA to the infinite case are called the BUchi 

automata [131 ] where the set of runs intersects the set F. Unfortunately such automata are 

not easily complemented. Kurshan’s approach was to identify a class of automata that is 

easily complemented. The accepting runs of an L-automaton is defined in terms of the dis

junction of two items, a set of cycle sets and a set of recur edges. An L-automaton is 

defined as:

Af = (Q, I ,  T, I, Z, C)

where:
Q is a set of states,

X is the input alphabet,

T c Q x I x  Q is a transition relation,

/  c  Q is a set of initial states,

Z c  Q x Q is a set of recur edges,

C c 2 e is a set of cycle sets.

An accepting run in Af is defined the set of runs that either pass through a recur edge infi

nitely many times or else eventually cycles wholly within a cycle set Cl forever:
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n*(?) = 1<?«eG\ r  .  _  .  W
 ̂ (,infe (q) r > Z * 0 v  3C- e  C.infv (q) c  c j  -1

The language of Af is defined as the set of runs that either traverse a recur edge infinitely 

often or which eventually settle within a cycle set:

L(M) = {jc e  Z^ljchas arun \iM(q) }

By the Theorem of Kurshan, ̂  a deterministic L-automaton has a unique accepting run.

Thus its complement language L (Af) is defined by runs where recur edges are traversed 

finitely often and any infinite behavior is not contained in a cycle set:

1 - { 4 / 6  I ( , „ / - ( * ) r , z = 0 A ^ 3 c i e c ; n A ( * ) c c J )  J

L(Af) = { x &Z  |x has a run \iM(q) }

The elegance here is that the complementation of L-automata is entirely syntactic by vir

tue of treating the acceptance conditions Z  and C in the complementary fashion. A deter

ministic L-automaton can be complemented in unit time simply by considering its 

acceptance conditions in a different light.

Practical implementations of formal verification based on language containment using 

various classes of co-automata, including L-automata and even more expressive varieties, 

have been shown by Kurshan [450] [454], and Hojati etal. [364] [359] [362] [361].

2.2.6 Denotational Models

The denotational theory of computing starts from the premise that given a structure such 

as a network or a state transition system, there is an natural operational definition which

1. Variously presented c.f [454], Lemma 6.2.30, page 95.
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defines an execution of that structure. This definition is said to be the operational seman

tics of the structure. Such a system exists because it can be laid out as a (finite) set of 

rules. It is far less obvious however that a given operational semantics is well defined in 

the sense that its operations preserve any deeper mathematical relationships. The denota

tional semantics of the system establishes just such a connection by relating the syntactic 

objects of the structure to elements of carefully constructed (possibly infinite) function 

spaces where such relationships are already known to exist. These function spaces are 

called domains and are constructed to preserve the topological notions of composition, 

partial ordering, approximation, limits, least upper bounds and fixed points. These 

abstract topological concepts are in turn used to model the operational concepts of execu

tion, termination and equivalence. Further, once the operational and denotational seman

tics are proved equivalent then propositions about the execution and manipulation on the 

syntactic structure can be said to have a meaning in the model.

A denotational semantics is based on the premise that composition at the syntactic level 

(juxtaposition) corresponds directly to functional composition on a suitably defined 

domain. So a semantics is a map S:L -> M from programs in a language L to instances of 

a model M  which preserves composition:

SH statement I] = model

S J s ta tem en tsta tem en t2 \\ = S][statementl fl° S d statement^ D 

S[[ statement j ; statement^ fl = model j° model-,

The semantics defines a set of domain equations associating syntactic structures with ele

ments of the underlying models. The semantics is said to be fully abstract when two state

ments which behave the same (relative to some model-theoretic definition of behavior) 

denote the same model element With either a fully abstract or a non-abstract denotational 

semantics in hand, the execution of the program under the operational rules can truly be 

said to “solve” the domain equations for the final model element. As such, the central con-
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stniction in a denotational semantics is a domain which is suitably rich so that it is certain 

to contain all of the required initial, intermediate and final functions. In particular the 

model composition function ° :M -+M  must always exist and be well-defined. Failin g its 

existence, there might exist programs which, through composition, attempt to denote non

existent elements in the underlying model. Such programs, if they existed, would neces

sarily be nonsensical and by implication their operational result would necessarily be 

undefined.

Fortunately, Scott showed that there exists a universal domain which is rich enough to 

contain any computable function and into which any computably-based domain can be 

embedded (conversely, out of which any such domain can be retracted). That universal 

domain is pco, the powerset of the natural numbers. This is a surprisingly general result 

because it applies both in case of the finite computations as well as infinite ones. Its signif

icance is that any behavior which can be described in terms of a computable function can, 

in principle, be described through a denotational semantics that constructs the appropriate 

domains. The generality of the theory allows for its application in a wide variety of situa

tions pertaining to both finite (terminating) and infinite (non-terminating) computations.

Thus in this small survey, denotational semantics offers essentially a recipe for con

structing a representation of the model in terms of ideas from algebraic topology. As such, 

a denotational model of a system with state and state transitions, no matter how these ele

ments are represented in model, will necessarily take advantage of topological concepts 

such as composition, partial ordering, approximation, limits, least upper bounds and fixed 

points. For the purposes here it is sufficient to observe that a singleton state, a set of states 

and even the transition relation itself are isomorphic to their respective characteristic func

tion which is necessarily a computable function [324]. As such, the basic operations of 

formal verification, symbolic execution, can be phrased in terms of such topological con

cepts and in fact can take advantage of them in the design of the language semantics itself.
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In fact, the exposition of these principles and their effect on the model of time within a 

step, on the existence and utility of a well-defined notion of 5-time, is the central focus of 

the computational semantics proposed in Chapter 3.

22.1 Focus

The previous sections highlighted five of the standard semantic models. In each case the 

formalism consisted of some explicit or latent definition of state coupled with a mono

lithic or disaggregated definition of a transition relation. The exact form of the state and 

transition relation representation varied and in that variance enabled the definition of vari

ous notions of behavior. The common thread throughout was the notion of state, latent or 

explicit, monolithic or disaggregated, and the concomitant transition relation which 

defined the (macro) step of the formalism. Within each formalism distinctions could be 

observed in the fine structures in the representation of state or the transition relation itself. 

Of course, among all five of the standard models the definition of behavior was subtly dif

ferent though relationships have been established among the notions of trace conform

ance, language containment, model checking and bisimularity.1 Finally the domain theory 

of Scott and the universal domain pro were introduced, not as a further semantic model 

per se, but rather as the theoretical basis for a semantics based on approximations and 

fixed points in a non-abstract 5-lime to be presented Chapter 3.

23 Some Non-Standard Models

Having reviewed the standard models, their operational properties and behavioral speci

fications, it is useful to contrast them with some non-standard models which were 

designed with a more specific application language in mind. There are two non-standard 

models which can be highlighted for their elegant association to their respective language.

1. Gupta’s overview of formal verification methods [310] surveys such results where they are known.
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They are distinguished in that they each form the semantic basis for a particular language 

which is then able to exploit some particularly interesting property of the model. The two 

models are the Non-Deterministic Event Sequence model which is the semantic model for 

the UDL/I language and the domain 2Z, the 2-adic integers, which is the semantic model 

for the 2Z language. These models and their languages are summarized in this section. 

The major focus is the semantic model, as opposed to the language per se, and especially 

focusing on the simulation, synthesis or verification analysis that is enabled by the seman

tic model. The treatment here is again that of a survey, presenting the major features and 

highlightings to these languages. A simple program fragment is provided for each lan

guage to give some sense of its flavor.

23.1 Non-Deterministic Event Sequences (NES)

The Nondeterministic Event Sequence (NES) model [731] [395] forms the semantic 

basis for the UDL/I language [732] [404]. The high-level language is UDL/I which is ori

ented at gate-level and register-transfer-level descriptions of hardware. The language was 

originally designed for standardization on a par with VHDL but with an eye towards being 

useful as a specification vehicle for automated synthesis procedures [423]. The syntax of 

the language is based on an earlier language HSL-FX [561] which was developed at Nip

pon Telephone & Telegraph. An example of a program fragment from the literature is 

shown in Figure 2-10. *

The Nondeterministic Event Sequence is general enough to support the notions of time 

used in both asynchronous and synchronous circuit design methodologies. There is even a 

simple intermediate “core language” that provides a sort of half-way point between the 

HDL at the high level and the operationally-defined event sequence machine at the low 

level. The language-to-semantics linkage is shown in Figure 2-11. The only aspect miss-

1. This is a partial presentation of the example in Karatsu [418], page 55.
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automaton: ifat(ift): .riat: .elk;
Catch: bagin

mamout :■ mam<pc>; 
pe :■ lnc(pc); 
opl :■ mamout;
If mamout<0> than 

"tast MSB of OP1* 
nl ■ 2-word Instruction"
*0 ■ 1-word Instruction"
-> op2fat; 

alsa
"task transfer"
— > axac**ext;
-> fetch; 

and_if;
and;
op2fat: begin

mamout :■ mam<pc>; 
op2 :■ mamout; 
pc :■ Inc(pc);
"task transfer"
— >exec**axt;

and;
and_auto;

Figure 2-10. A Finite State Machine in the UDL/I Language

ing are effective algorithmic procedures for synthesis, simulation and verification that 

exploit the properties of the model. *

An understanding of UDL/I and the purpose of its NES model is much more obvious if 

one understands that the language was designed for the description of mostly gate-level 

descriptions with a second level of synchrony defined by clock-activated latches. As such, 

the “design center” of the model is asynchronous logic where delays are measured in unit- 

based time coupled with a secondary level of synchronous time defined by an externally- 

supplied clock. The major questions to be asked of descriptions in the language are those

1. This is not to say that commercial UDL/I simulators do not exist. The point here is that these simulators 
do not exploit the all-possible-scenarios semantics that is intrinsic to the NES model. Rather they support 
only a deterministic subset using the accepted event-driven or compiled-code schemes. As such they merely 
provide an alternative to simulators accepting VHDL or Verilog. Some attempts have been made to apply 
symbolic methods to the full NES model [155] [393].
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Full UDL/I

Core Language

Event Sequence 
Machine

figure 2-11. The Structure of the Semantics of UDL/I

concerning the presence or absence of glitches or indeterminacies at the asynchronous 

level.1 The ability to pose questions about the behaviors at the synchronous level are at 

best secondary.

Uncertainty is fundamental to the gate-level problem space. Uncertainties consist of 

unknown values such as the unknown delay of a gate or so-called “don’t care” values as 

found in incompletely specified boolean functions. Both of these types of uncertainty are 

addressed in the NES model through the use of nondeterminism. A system is modeled as a 

sequence of events E  = (p, v) which are understood as a value v occurring at a place p . 

Places are wires or latches and it is said that with the occurrence of £ , the place p 

becomes v . Events have zero duration and events are totally ordered. As such there are no 

simultaneous events. Causal relations between any two events E{ and E2 is given by a

1. There are some interesting and nonobvious results in this area such as Monotone Speedup Failure where 
a combinational circuit may take longer to stabilize as the gates on the critical path are sped up [SI6]; the 
circuit as a whole may slow down when individual gates are sped up.
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partial order between the two events E, < £ 2. This partial order is said to define a set of 

all event traces that satisfy the partial order. An example of a partial order defining a set is 

shown in Figure 2-12. The model-theoretic basis of the NES model is therefore that of 

trace sets.

Partial Order

a < b  

b < d  
a < c  

c < d

Traces = { abed, acbd }

Figure 2-12. A Partial Order on NES Events Defines a Trace Set

The NES model has a multiform notion of time. That is, time is treated as a special sort 

of event E = ( @T, unit) and there can be many kinds of time. Examples of units might 

be nano-seconds or clock ticks.

Operationally the NES model is defined over an abstract machine which is somewhat 

like a Turing machine. The NES machine reads a single tape from left to right and com

putes based on the events that it reads on the tape. Processing an event consists of reading 

the event from the tape and producing a new output sequence of events which are inserted 

back onto the tape just before the read pointer. This is shown in Figure 2-13.
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Formally, a NES machine is defined as:

M  = (Q, E, 1,8)
where:

Q is a set of states,

E is the alphabet of events that can be seen on the tape,

/ c Q  is a set of initial states,

5 c  ( g x £ )  x (Q x  E*) is a transition relation describing how a state-event pair 

moves to a new state, writing a sequence (not just a single event) onto the 

tape.

A run in M  is given by:

^ . Q x E - t l 8'
where:

£(<?, s) = {e}
£ ( q , e x )  = {e - y \ ( ( q , e ) ,  (q ' , G) )  e 8,y e £ (q\ a - x ) }

The NES machine specifies behavior as the set of runs through the machine. This makes 

the machine a transformer of traces to traces defined formally as:

z.\2  - >  2

where:

S  = { U ,y) | Vx e £*, r e  I,y  e E*.y e  c, (*,*)}

There is a parallel composition operator that allows for two machines to be structurally 

composed together to form one larger machine. The operator M X\\M  ̂ is defined using the 

“shuffle set” of two strings defined as

shuffle {ax, a2) = {a\proj\ (a) = a x,pro j2(o) = a 2}
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The machine before 
processing the event e

a e 0 b

The machine after 
reading the event e 
having written output o

Figure 2-13. The Execution of an NES Machine

The parallel composition of two NES machines is then given by: 

Mx\\M2 = (<2, x Qv  Ex u  Ev  /, x ly  5M HAf J

where:

((<?,,e ) ,  U ’pCT,)) € 5,

( <i2). <*) | ((^2’ e) »(^'2* ^2)) e  52 
a  s  shuffle  ( a (,cr2)

A system is modeled at the NES machine level by treating all gates and latches in the sys

tem description as individual machines. The parallel composition operator is used to 

express the execution of all of these machines in unison. Conceptually, a simulator for the 

NES machine could then compute the set of possible traces allowed by the design.

A UDL/I description is converted to a NES machine description by first compiling it
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into the core language. The definition of constructs in the core language is then defined in 

terms of individual abstract machines and the parallel composition operator. The correct

ness of an implementation with traces Ef relative to a specification with traces Es is 

defined relative to a trace conformance condition:

V xe £*.Ef (x) c H j(x )

Any simulation procedure that “executes” an NES model must intrinsically be complex 

as the semantics denotes all possible behaviors be computed and represented in a data 

structure. Ishiura et al  [393] admit that the semantic model is horrendously detailed and 

probably too complex for use on a design-wide scale. In response they posit the existence 

of a range of accuracies under the NES model such that different simulation algorithms 

could be used for different accuracy levels. Such an accuracy framework however has not 

materialized so the NES model has not seen use in practical applications.

2.3.2 The 2-adic Integers (2Z)

A second but more practical non-standard model is the so-called 2-adic integers (0Z) 

which provides a semantic model for the 2Z language [ 100]. 2Z is used to describe com

putations on systolic array processors and so-called Programmable Active Memories [86] 

in particular. An example of a program fragment from the literature is shown in Figure 2-

14.1

Vuillemm [710| established the connection between Hensel’s p-adic numbers" for 

p = 2, several classes of computable functions and synchronous circuits. The 2Z lan

guage semantics is an interpretation of expressions in 2Z as synchronous circuits defined 

from the composition of four basis elements: the constants 0 = o0 . . .  and - 1  = , 1 . . . ,

1. Vuillemin [710], page 877.
2. Hensel’s work is attributed variously as being “around 1900” or 1913 [346]. A more modem presentation 
can be found in Knuth [438].
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davlca Holaat
n ■ 4; I f Vector size
b • 24; // Serial bits par sample
input xt [n];
output y: [n];
var C<[n,n];
I f Read tbe coefficients 
C » Read(*FileOfCoeffs<r);
// Synthesis for tbe reset signal 
r » 2**(b-l)/(l-2**b);
reset r do

for i < n do 
YtO,i] - 0; 
for j < n do

Y[j+l,i] - Y[j,i] + C[i,j] * X[j]; 
end for; 
y[i] • Y[n,i]; 

end for; 
end reset 

end device;

Figure 2-14. A Matrix Multiplier in the 2Z Language

the register and the multiplexor (mux). The structure of the language and its semantics is 

shown in Figure 2-11.

The p-adic numbers are the integers Z = {-to, . . . ,-2 ,-1 ,0 , 1,2, ...,co) modulo a 

prime p which are presented least significant digit first. A p-adic number is written 

according to the rule Bp (rt) = (n rcm p) Bp (n+ p). The representation of a p-adic 

number is by definition infinite and as such the terms generated by Bp (n) must eventu

ally cycle. For example, for p = 2 and using parenthesis to denote repetition, zero is rep

resented by 2(0), one by 2l (0), two by 201(0) and so on. Negative numbers are 

represented in their infinite 2s-complcment form: minus one is 0 (1), minus two is -,0(1), 

minus three is 210 (1) and so on. The rationals with an odd denominator tend to have non

trivial repetitions; such as -2 2 /7  which is represented as 20101 (110). For p = 2 there 

is the obvious association of n rem p  with bits and of B2 (n) with serial computation.
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2Z Language

Expressions

Synchronous
Circuits

Integers in 9Z

Figure 2-15. The Structure of the Semantics of 2Z

What is interesting about 2Z is that it has the properties of both the ring over the inte

gers, 1 (Z, o + o, o -  o, 0, o x o, I), and of the boolean algebra over the set of natural num-
2 Nbers (W, o o  o, o u  o,-o, 0 ,2  ). What is missing is (truncative) integer division, and

exact division by an even number. This latter loss means that 0Z is not a field as there is no

multiplicative inverse for every element of the structure: Vfc e 0Z .3/./ x b = 1 fails to

hold. The structure ,Z  is almost a field in the sense that the so-called odd inverse is

1. From topology [427]:

A monad is a structure (M. o • o. e) over a set M  where o • o is associative and e is the unique null element. 
A group is a structure (C, ° +», °-i, e) over a set G where |C| > 1. ° + ° is associative, e is the unique neu

tral element and Vx e Gjc + x"1 = e : a group is commutative or abelian when ° + ° is commutative.
A ring is a  structure (fl, o + o, o -  o, o, o x  o, l) w here {R, o + o. o -  o, 0) is an abelian group and ° x ° is associa

tive and  distributes over ° ° .

A. field  is a structure (F.o + o, 0-o . O.o x 0, 1) which is a ring and l l̂ >2 and (F -  {0}, = x <>, o 1, i) js an abe
lian group.

From algebra [325]:
A boolean algebra is a structure (B, o a  <., o v  o, o, 0 , 1) over a  se t B w ith a  distinguished universal elem ent 

I . its com plem ent 0 , « a »  and ° v ° are com m utative and  distributive. 1 is the unique neutral ele
ment w ith respect to ° a °  and 0 the unique neutral e lem ent w ith respect to ° v  ° .

2. This is just p<o from Scott’s theory.
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allowed. Also missing is integer comparison as any function that performs a comparison 

between two numbers must by definition see the infinite whole of the number. Since a 

number’s representation is by definition of infinite size, such a function is not continuous 

and so cannot be realized in a physical object.

Interpretation as Circuits

In the theory, a synchronous circuit is defined as an expression in terms of the four basis 

elements: the constants 2(0) and 2( 1 ) , the mux ?:2Z3 -> and the register

Using the constants, the mux gate ? (c, a, b) is universal with respect to the boolean alge

bra; it can implement any of the boolean operators o A  o , o V  o and -> o .

A circuit expression is composed using a set of variables V{C)  = I \ j  M v j  R that rep

resent the connections in the circuit. The set /  = {t,, ik\ is the set of input vari-

the set of register output variables. The set of output variables O is just some subset of the 

overall variables: O q V(C) and there may be no combinational cycles unbroken by a 

register.

Intuitively, every 2-adic number can be produced by an output-only synchronous circuit 

that produces the bits of the number one at a time starting at the least significant bit. Func

tions over the 2-adic numbers correspond to synchronous circuits that accept representa

tions of 2-adic numbers and produce their results least significant bit first. Every 

synchronous circuit CH/D with k inputs can be thought of as a function f:^2? -»• ,Z. 

Any expression Eff/fl over terms in nZ  can be thought of either in its synchronous circuit

2x:^ZT -> 2Z. The two non-constant elements are defined by

ables, M = {mt, ..., m;} the set of mux output variables and R = { r,, r-,,..., rm\
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interpretation or as a function. Vuillemin distinguishes three classes of functions, each a 

superset of the previous: bitwise mappings, online functions and continuous functions. As 

each class subsumes the previous, it is convenient refer to an individual function as 

belonging to the smallest possible class. With this in mind, the bitwise functions are 

straightforward. They use the boolean algebra aspect of 0Z and correspond to a serial ver

sion of combinational functions. The two other classes of functions correspond to syn

chronous circuits.

The online functions are dependent at time t = k  only on the inputs that have been pre

sented from time t = 0 up to t = k. The continuous functions on the other hand are more 

general. They are dependent at time t = k on inputs that have (or will be) presented from 

t = 0 up to some time / = m (k). Clearly every online function is also continuous. The 

class of continuous functions^ can be viewed from a systems-theoretic perspective as non- 

causal systems; they are systems that anticipate future inputs. They are implemented by 

transforming them into causal systems through the introduction of delay. This delaying 

function is phrased as an “output enable” in the theory and amounts to an extra signal 

indicating to the user that the early junk produced by the circuit should be ignored.

It is a theorem that any online function can be implemented by some finite synchronous 

circuit expression C [[/ fl if a finite representation for its Synchronous Decision Diagram 

(SDD) can be computed. The SDD construction procedure may fail to terminate if the 

function is not online (thereby creating an infinite SDD). The SDD is a canonical form for 

synchronous circuits, and so form the basis for a physical synthesis procedure analogous 

to those using Bryant’s OBDDs for combinational circuits [4961. Further the retiming and 

resynthesis framework of Leiserson and Saxe [474] is directly applicable to such circuits,

l. The terminology and results from Scon’s theory about continuous functions is directly applicable here. 
The continuous functions correspond to the computable functions. A function which is not continuous is not 
computable
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thereby connecting the bit-serial forms to the more conventional bit-parallel representa

tions.

2-3.3 Focus

The preceding sections presented two examples of non-standard semantic models. 

These models, the Non-deterministic Event Sequence model and ,Z , expressions over the 

2-adic integers, were not based (directly) on transition systems but rather on some more 

specific and detailed mathematical structure which highlighted a property of interest In 

the first case that structure was a Turing machine-like model which operated upon nonde- 

terministically shuffled event sequences. Instead of being a transformer of states-to-states 

as is the case in a state-transition system, the NES Machine is a transformer of sequences- 

to-sequences. The distinguishing characteristic being that the output of a transition can be 

a sequence of events which then forms the new input In the second case that structure was 

a definition of integers, the 2-adic integers, which has been shown to have a direct analogy 

to combinational logic and serial sequential circuits. Unfortunately, while these non-stan

dard models are tremendously interesting from an intellectual perspective, there is much 

less depth to them in the potentially application areas: simulation, synthesis and formal 

verification. They are featured here because these semantic models in particular are part of 

two very elegant examples oflanguage definitions where the rigorously defined semantics 

contributes to the proposed use of the language. This contrasts markedly with the situa

tions where the language semantics merely forms a neutral representation language for 

describing compiler design constraints.

2.4 Review

The preceding sections have surveyed various means for specifying programming lan

guage semantics and illustrated the tremendous breadth possible in semantic models. The 

theme throughout the presentation was that despite this breadth, for the case of finite state
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synchronous systems, language semantics and semantic models ultimately boil down to a 

notion of transition relations. That is, the behavior of systems is ultimately defined in 

terms of states and the transitions between those states. In a formal sense, a program in a 

language is therefore a convenient and cogent representation of a transition relation acting 

between program states. This conclusion was arrived at through a chain of observations. 

The first observation established that a semantics is in fact necessary. Simply stated, this is 

because checking that a program obeys some behavioral property requires a formal notion 

of what the program computes. The definition of a computation is intrinsically some 

mathematical structure and the association of the program with a mathematical construct 

expressing its computation is the very definition of its semantics.

The second set of observations concerned the paradigms used to define language 

semantics. These were reviewed in Section 2.1 with the specific eye towards drawing par

allels between the axiomatic, denotational and operational methods of semantic specifica

tion. While all three methods are on the surface quite disparate, providing differing and 

complementary views of semantics, when one looks deeper one always finds a notion of 

state and a program is viewed as a form of representation for transitions between those 

slates. This was seen as an observation on the nature of computation within the constraints 

of finite-state. From that observation a series of semantic models were presented in Sec

tion 2.2. Each of those presentations focused on the essential aspects of the model but in 

doing so showed that underneath the distinguishing features there was always some 

notion, however latent of state and state transitions. In contrast two non-standard seman

tic models were shown in Section 2.3. These models did not have the state and state-tran- 

sition aspects of the standard models. In contrast however the two non-standard models, 

the NES model and 2Z, the 2-adic integers, formed an elegant semantic basis for their 

respective languages UDL/I and 2Z.

At a fundamental level therefore abstract behavior for finite state systems is in some
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fashion, defined in terms of states and state transitions. Given this definition for abstract 

behavioral components, the next question to be addressed is the specification of pure 

behaviors and the structural aggregation of them through coordination between compo

nents. The subsequent question to be addressed is whether there are in fact any limits on 

the amount and kinds of structure which can be introduced into a finite state semantic 

model. These two issues are the subject of the next two chapters.
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Computational Semantics

A semantics is a formal means by which a mathematical object is associated with the 

textual representation of a program. The examples of the previous chapter established, in 

the form of an overview presentation, that for the finite-state case, semantic models ulti

mately boil down to a means for specifying states and the transitions between them and 

that there are a variety of such methods. That presentation established the base of the dia

gram of Figure 3-1, namely that the model M  = (Q,T)  will at some level of detail be for

mulated in terms of a set of states Q and a transition relation T. Building up from that 

proposition, the next element of concern is the semantic map S:L -> M  and its internal 

properties relative to desirable properties in L and M.  Of particular interest here are the 

aspects of S which aid or hinder any practical ability to manipulate model elements in 

symbolic form. These internal properties of S  are the focus of computational semantics by 

which is meant the use of the semantic map directly as the basis for symbolic analysis of 

program properties on the state-based model M  = ( Q, T).

Within the study of semantics itself, the major issues are whether full abstraction and 

full expressiveness are afforded by the combination of the semantic model and semantic 

map. In a theoretical setting these two issues are the major preoccupation in the design 

and analysis of language semantics. In a more pragmatic setting however our interest is 

not only in these two aspects but also the practical aspects of symbolic manipulation of

93

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

L 

S
T

M = (Q,T)

Figure 3-1. A Language, its Abstract Semantics and the Model

model element In particular the interest here is in the competing constraints imposed on 

any semantics both from below and above. From below, that is from M upwards, there are 

pragmatic constraints on the feasibility of creating and manipulating certain kinds of sym

bolic representations. These constraints are shown here to be related to the desire for a 

fully abstract model. From above, that is from L downwards, there are constraints 

imposed by the desire to write cogent programs. Programs are written with a certain econ

omy of exposition and a language which offers a more compact representation for the 

combinational elements of a design is typically viewed in higher regard than one which 

requires each potential alternative to be laid out in detail. * These constraints are shown 

here to be related to the need for full expressiveness but which are subject to the pragmatic 

desire for compact representation at the language level.

More concretely, the issue at hand is one of a tension between the ability to denote ele

ments in M by a method of incremental approximation and the ability to ignore the con

comitant mathematical baggage carried along by such an approach. This brings out the 

structure of a practical semantics as shown in the diagram of Figure 3-1.2 In that view a

I. A more detailed series of observations on system description languages themselves must be deferred 
until Chapter 6 at which point the opportunities, limitations and alternatives in semantics will have been 
explored. There, a more detailed series o f observations on language design ran be made within the frame
work for semantic analysis that developed here and Chapter 4.
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practical semantics Sa is a map which is non-abstract and identifies elements in a model 

M0 in a way which is somehow convenient relative to the language L . The condition of 

full abstraction is rederived through a projection IT:Af0 -> M  which provides a way to 

ignore the extra baggage of Ma. The conditions for full expressiveness through this chain 

requires some analysis and in fact it is shown in Chapter 4 that there are certain fundamen

tal limitations on the sorts of implementation details that the projection IT can hide.

so
L  ►M 0  = (Q0 ,T0)

n
T

M = (Q,T)

Figure 3-2. A Language, its Non-Abstract Semantics and the Model

The theory proposed here for computational semantics is based on the notion of approx

imating computations on a space of functions. Approximation in this context is measured 

by the closeness to completion of a step in M. Each °-step taken in Ma is a better approx

imation to a step in M in the sense that some metric of completion is maximized at the 

limit of the °-steps. The idea behind computational semantics is that it is best, conceptu

ally and pragmatically, to express any single step in M by first defining it in terms of a 

series of much smaller steps in AT . The projection operation FT is then used to formally 

abstract away these intermediate °-steps.

2. Where necessary the symbol is used as a placeholder for the symbolic name of the microsemantics: 
e.g. o-time, °-step or X„. The placeholder “o” becomes “ 8” and “a" in later sections. This use of “ o” as a 
placeholder is distinct from its use as the composition operator: e.g. fog which is the function kx.g ( f (x) ). 
The reader is warned that both uses of appear in the following. The intended meaning is unambiguous in
all cases.
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The claim being made here is that a fully abstract semantics, i.e. the direct map 

S:L -> M  shown in Figure 3-1, is too great a leap to make in a practical sense. It is too 

difficult to construct a general S  which establishes a direct link between an arbitrary 

p & L and its corresponding m e  M . In addition, producing and manipulating symbolic 

representations of the transition relation in such a direct regime has been shown to be 

problematic. What is needed to remedy this situation is a two-phase approach as is 

depicted in Figure 3-1. There, the first phase is the semantics Sg which has a more or less 

intuitive correspondence to the operational execution of programs in L. Once this has 

been established in terms of °-step paths the second phase is the projection n  which 

extracts out the fully abstract single-step element in M .

In order to construct a system such as the one in Figure 3-1, several elements must be 

assembled. First, a theory of computation that incorporates a notion of approximation over 

function spaces must be found. Fortunately such a theory already exists in Scott’s domain 

theory1 and continuous functions between them. This theory allows the multi-step 

semantics (S0) to be related to the single-step version (S') in terms of a fixed point on an 

underlying o-step approximation series. Secondly, this theory must then be incorporated 

into the relational transition semantics that was argued to be fundamental in Chapter 2. 

This incorporation allows the forward and backward image computations to be explained 

in terms of the least and greatest fixed points over the °-step series. These elements then 

constitute a theory of multi-level time which identifies the conditions which must prevail 

for the multi-step o-time to be substitutable in place of the single step macro time. This is 

the condition when S = 50ofT holds and is the condition of substitutability.

I. Scott’s original publications [6401 [641] [642] [673] [643] contain the more theoretical treatment. The 
development here follows that of Gunter and Scott [309].
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3.1 Semantic Domain Theory

Scott’s domain theory is implicidy based on the idea of continuity from algebraic topol

ogy. Concretely this takes the form of establishing that every computable function is the 

fixed point of a series of better and belter approximations to it. Under certain conditions 

this series is known to converge and one can claim at that point to have an exact character

ization of the function. This is a familiar idea in the realm of numerical analysis where 

approximation, limit series and continuity allow for computational solutions to systems of 

differential equations. In this case, however the underlying domains are not of the real 

numbers but are function spaces which must be constructed so that the familiar notion of 

approximation, limit series and continuity exist.

Scott showed that the domain po>, the power set of the natural numbers, under a 

broadly-defined isomorphism construction, is large enough to hold all the computable 

functions while preserving the required relationships. Thus neither whether function 

spaces with the appropriate properties can be constructed nor the particularities of the iso

morphism embedding of functions into pco is in question here. Questions in that regard 

have been amply dealt with elsewhere. * What is of interest here is the particular use of 

domain theory in the definition of the multi-step model Ma and the projection n  down 

onto the single-step model M .

The following sections provide the basic definitions and properties of Scott’s domain 

theory. The issue of a limitation to computable functions in the definition of macro-step 

behavioral properties is returned to in Section 3.2.

3.1.1 Primitive Domains

Domains are countable sets endowed with an internal ordering. The ordering forms a 

complete partial order^ which, when the basis elements are countable and the internal

l. c.f. Stoy [6731, the technical reports cited therein and Scon’s subsequent publications.
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structure is algebraic, becomes a domain. The definitions presented below constitute the 

basic domain theory. They are presented here in fully general form, allowing for the sets 

to be both finite and infinite, in order to establish the non-utility of domain theory in defin

ing fair macrostep behaviors. This is accomplished in Section 3.2. Subsequent sections 

show that certain of the careful limit constructions which are needed for the infinite case 

become superfluous in the finite case. In fact for the finite case, computability falls out 

almost directly. It is only in the infinite case that computability is endangered so some 

care must be taken.

The bases of domain theory are sets, functions and a relationship c: between elements. 
The relationship x c y  is understood to mean that “y is more defined than x  ”

A partially ordered set (poset) is n set D with an ordering c: which must be:
reflexive: x c ;x ,
anti-symmetric (y g x )  a  ( j c y )  => (x = y),
transitive ( x c v )  a  ( y c ; )  => ( x c : ) ,

The y in x c  y is called an upper bound of x and may be written a s x u  y = y .
Of course x u y  = y u x  and x u  x = x .

As well the x in x c y  is called a lower bound of y  and may be written as x n  y = x .
Of course x n v  = v n  x and x n  x = x .

A directed subset M e  D has the property that every finite X ciA f  has an upper bound 
within M : Therefore every pair of elements x, y € X  has an upper
bound z  e M given by z = x  u  y and the set X  = {x^ x v . . xk} of an increasing 
chain X q C ^ c . . .  c x fc is a special kind of directed set.

A directed subset M is interesting when it does not contain its upper bound: (_[Af g M. 
No finite directed set is interesting in this sense.1 An element z  e  D is called a limit 
point when z = j_|M for an interesting directed set M.

A complete partial order (cpo) is a poset D where:
there is a unique element J_ e. D called bottom2 such that Vx e D l c x  and, 
every increasing chain x0c x , c . . . c x t  has a least upper bound [_} x i s  D .

2. The original derivation was based on-complete lattices. M ote recent formulations of the domain theory 
are based on complete partial orders (epos) which are similar to complete lattices only they need not have a 
T element. The reasons for this switch, have to do with perta in  technical aspects of the powerdomain con
struction. This is discussed in Scott [642]. This presentation follows the cpo approach.
1. Though some are thought to be amusing in an existentialist sense.
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There exist compact (equivalently finite) elements e in the cpo such that for a directed 
subset M where z = \_\M and e c z  then there is also a y s  M  such that e c y .  
Call the set of all compact elements K  (D).

A cpo is algebraic when every element y  is the least upper bound of its compact elements. 
That is, when Mx = { e ^ e ^ x }  then x = [J Mx.

An algebraic cpo requires that the information which defines x  come exclusively from the 

compact elements and not, for example, from the order in which the ei are assembled. 

Further an algebraic cpo requires that a limit point x  to be the upper bound of only finite 

elements (though infinitely many of such elements ei may be required). From these defi

nitions, a domain is defined as:

A domain D is an cpo which is algebraic and where the set K(D)  is countable.

These definitions are highly abstract and of note is that they apply equally to the finite 

case as to the infinite case. The only restriction is that the number of compact elements in 

the set must be countable. Two examples of flat domains are shown in Figure 3-3. In par

ticular. any set can be made into a flat domain treating the set as the basis elements and 

adding 1  below every clement of the set. Domains in this style are said to have a discrete 

ordering among the proper elements meaning that x c y  if and only if x = y . They are 

simple in the sense that they have no directed subsets.

In contrast, a non-fiat domain is one in which there are internal relationships among the 

elements. In this case the domain elements consist not only of the basis elements but also 

of elements which arc the upper bounds of other domain elements. Such domains have 

directed subsets. An example of this kind of domain is the power set 2 of a countable set 

S = (5,,52, ..., Jn}. The empty set 0  corresponds to the element 1 ,  the compact ele-

2. Barendregt [54] also refers to X as unspecified (page 325). Either sense refers to X as the unique repre
sentation of “no information.” Also. X is often called the improper element of the cpo since it need not have 
a material representation. In an implementation setting X may or may not require a tangible form subject to 
certain conditions. Kahn’s Dynamic Process Network model [414] [415] gives the conditions preventing 
explicit computation with X in a stream-based communicating process model.
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Figure 3-3. Examples of Rat Domains on Countable Sets

s
ments are the non-empty subsets U e  2 and the ordering c  is merely subset

inclusion c . Such a domain for the basis set S = {a, b, c, d \ is depicted in Figure 3-4. 

The same construction can be applied to the countably infinite case as well. One example 

in that case is £>co, the power set of the natural numbers co. Here the compact elements 

would be the set of finite subsets of p  to and the ordering c  is again subset inclusion c . 

A second example, one which is more commonly used, is the set of infinite sequences 

from an alphabet: w e  . The empty sequence e corresponds to X , the finite strings 

s e Z* are the compact elements of the domain and the ordering x  c  y means that x is a 

prefix of y (i.e. 3- e Z*.xz = y ).

The paradigm in domain theory is the use of domain equations to define the result of a 

computation. The execution of a program is then said to “solve” these domain equations. 

A crucial concern therefore is the existence of a (non-trivial) solution to an arbitrary set of 

domain equations. Fortunately, there exists a universal domain into which any other 

domain can be embedded. * Conversely, one can also retract any domain out of this univer

sal domain by defining a function which is the identity on the elements of interest and

l. The encoding and embedding construction is called the Inverse Limit Construction, an outline of which 
can be found in Stoy 16731.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

100



www.manaraa.com

Figure 3-4. The Domain on the Power Set of S = { a. b. e. d }

sends all olhcr elements to 1 .  The universal domain is <jco , however it is only significant 

for this presentation in the sense that its existence ensures that nontrivial solutions to 

domain equations exist. On a practical level it means that one can posit domain equations, 

subject to some broadly defined limits, which produce whatever internal structure suits the 

task at hand with the confidence that there do exist domains which satisfy the equations. 

The ability to embed an arbitrary domain within fy) co or to retract any domain of interest 

out of co is the strong result which allows the topological aspects of domain theory to 

be separated from the engineering aspects of designing a semantics in terms of domain
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equations. By way of (an almost direct) analogy, the topological aspects of real number 

theory is effectively separable from the engineering aspects of designing computational 

methods to solve systems of differential equations.

3.1.2 Functions on Domains

Functions can be naively understood in completely set-theoretic terms as a set with a 

special kind of structure [427]. Since the sets outlined above can be potentially countably- 

infinite some restriction must be made to ensure that the class of functions definable in 

this manner is not too large to be of use. An obviously reasonable requirement, given the 

algebraic property of a domain, is that a function be such that for any input value, an enu

meration of the compact elements of the output can be produced by an enumeration of the 

compact elements generating the given input. A further requirement that finite approxima

tions in the input correspond to finite approximations of the output Thus any infinite 

result, a limit point, can be approximated arbitrarily accurately through an enumeration 

and assembly of arbitrarily many finite estimates. Any element for which no such finite 

enumeration and approximation scheme is possible is necessarily incomputable. The 

restriction that allows for this decomposition and enumeration is called continuity and is 

given by the following definitions:

A Junction is a map from one domain to another. Such a map is merely the set of pairs for 
which the function is defined: /  = { (d, e) \d e  D, e e E, e = f ( d ) }. The notation 
/:£> -> £  is used to denote the function /  which maps elements in the domain D to 
elements in the domain E .

A function /  is monotonic when x  c j ’ => f ( x )  c  f ( y ); it preserves or increases the rela
tive order of jc and y .

A continuous function /  is a monotonic function where / ( (_J */) = U / ^ j )  holds. Any 
function /  on an element y made up of compact elements ei as y = [J  ei can he 
determined by computing the function /  on the compact elements and talcing the 
least upper bound of the result.

It is worth again observing that no finite directed subset M  of a domain D is interesting 

and that in every uninteresting directed subset, it is the case that for a finite subset X c M
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where X  = { e ^  e  K ( D ) } there exists a y e M  such that y = |_{e; . Further, every 

such eiement y under a function /  has the property that /  (y) —/ ^  j_J When f  is con

tinuous then [J  ef-j = |J / ( e f.) . But for the finite domain £> there are no interesting 

directed subsets M,  so it is never the case that v e  M  but y £ X.  For finite domains it is 

always the case that y =  [J  and y € X: the mcmotonicity conditions guarantee that, 

/ (y )  = . Thus for finite domains every monotonic function is also continuous. It

is only in the infinite case, at the limit points, where continuity says something extra 

about / .  There, continuity says that /  at the (infinite) limit point is completely deter

mined by the (infinite) limit of finite approximations.

3.1.3 Fixed Points of Functions

Fixed points of functions bring the approximation theory of the previous section up to 

the level of functions. A fixed point is a point, x e  D where a function f  :D -» D has the 

property that x = / ( x ) . An arbitrary function /  on an arbitrary domain D may have 

zero, one or a multiplicity of fixed points. The utility of fixed points in the approximation 

theory is that a monotonic function /  coupled with the ordering relation c  give some 

measure how well any given estimate x approximates a given x which is a fixed point 

of / .  Intuitively if x is said to approximate x then it must be the case that x c x  

(or x c: x , but consider the former case first). Then /  gives a way of arriving at a better 

approximation, namely /(x ) . Because of monotonicity if i c x  then /(x )  c / ( x ) ,  how

ever because x is a fixed point of /  then /(x ) = x and x c r/(x )  c x  holds. The same 

chain of reasoning applies for the x c  x case.

Tarski [681] showed that when /  is monotonic then there is a unique least fixed 

point \xf that is the upper bound of all the estimates of it starting from the unique 

improper element J_ (starting from no information at all). In addition when there exists a 

unique improper element T (the “inconsistent” or “overdefined” element) then there is 

also a greatest fixed point v f  as well. It is the lower bound of all the estimates of it start-
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ing from j .  These are defined as:

(Eq 3-1)
1 = 0

v / =  n / n(T) (Eq 3-2)
i = 0

One can additionally speak of the relative least and greatest fixed points. These are just 

the least and greatest fixed points from Eq 3-1 and Eq 3-2 except the starting point for the 

series is some other previously-agreed upon point p . To highlight this subtle difference 

one writes and v^/:

The respective domain elements X and T have the unique advantages that they are mini

mal (respectively maximal) relative to e  and so the fixed points \iLf  and vT/  approxi

mated from them are truly the smallest (respectively the largest). Further, since they are 

the extreme elements in the domain, the series Eq 3-1 and Eq 3-2 is guaranteed to find a 

fixed point when it exists. The danger with Eq 3-3 and Eq 3-4 computing p^/ and is 

that necessarily I c p  (respectively p c  j ). It may he the case that the only fixed points 

of /  are elements qt and every qt c  p (respectively every p c  qt ). Thus Eq 3-3 and Eq 3- 

4 are only valid when it is known a priori that there exists at least one fixed point direc- 

tionally beyond p .

In a practical setting where domain equations are being analyzed symbolically, the use 

of some other well known landmark point p may be appropriate because such an a priori 

analysis of the domain space can be accomplished before choosing a particular p . As well 

the use of Eq 3-3 and Eq 3-4 obviates the need to have an explicit representation for ±  or 

T in the symbolic form. The series approximates just as well from p though the fixed
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104



www.manaraa.com

points found will not be the least (respectively greatest) in the absolute sense. They are 

especially convenient when there is no T element defined for the domain as is the case 

for domains based on epos!

3.1.4 Functions as Fixed Points

Fixed points of functions defined on the primitive domains were introduced in the previ

ous section. This allowed elements in a primitive domain to be computed by a series of 

approximations. The monotonic function /  increased the accuracy of the approximations 

until the fixed point was reached. The least and greatest fixed points relative to a landmark 

point were defined. Scott showed that the continuous functions are a domain as well, so 

conceptually at least, a function can be computed by successive approximation, given an 

appropriate notion of c ,  just as certain elements of the primitive domains can be com

puted. This sort of fixed point is a solution to the functional^ equation /  = F {/} for the 

function /  and the monotonic functional F.

Such an equation implicitly depends on the existence of an ordering relation ft=.g 

which identifies how well the function /  can be said to approximate g. Scott showed, 

among other things, that such a relation c: exists and is well defined. Thus the set of con

tinuous functions between two domains is itself a domain. The natural ordering relation 

for continuous functions is derived directly from the ordering relation on the function's 

domain elements:

f , g & D l ^ D 2 f ^ g =  V xe Dvf ( x )  ^ g ( x )  (Eq3-5)

l . A functional is a function taking a function as an argument. It is a higher-order function. Notationally 
functionals are written here as F{f )  instead of /  (x). This is purely a matter of taste and is used to give the 
reader some mild hint about the type of the elements.
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Thus an equation such as /  = |xLF  over f:D  -> D and F: (D -» D) -> (£> -» D) is said 

to have the meaning:

U  {-Lt
1 = 0

When F has a fixed point, then /  can be said to be the smallest function satisfying the 

equation /  = F  {/}. As well, if Id:D -> D is the identity function then an equation such 

as /  = |i ldF is said to have the meaning:

/  = v-u F = L | F W (W(
/  =  0

When F has a fixed point greater than Id, then /  can be said to be the smallest function 

relative to Id which satisfies the equation /  = F {/}.

The greatest fixed point works similarly relative to T (when it exists) and Id .

3.1.5 Constructed Domains

The final aspect of the domain theory of interest here are non-primitive or constructed 

domains. The primitive domains were introduced in Section 3.1.1 as special sorts of sets 

which had an ordering relation c: on them. They were called primitive domains because 

the existence of the set was postulated at the same time as its ordering c  was defined. It is 

also possible to create new domains out of combinations of already-existing domains. 

This is done with the aid of domain constructors and projectors which respectively create 

elements of the new domain from one or more elements of the component domains and 

which identify the component elements in the new the aggregate domain. There are a wide 

variety of non-primitive domains, each modeling some necessary aspect of computa

tion. ̂ Whereas the primitive domains came with their own externally-supplied ordering 

relation cr, constructed domains must define their ordering relation subject to the order-

l. Mosses [545] and Gunter and Scott [301J together present a more complete set of domain constructors 
and their properties. There are a number of possibilities and alternatives. Only the domain constructors 
which are required for the later sections are presented here.
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ing of their constituent domains. The constructed domains used in the subsequent devel

opment are:

D = Dj x D2 x ... x Dn constructs a new Cartesian product domain of n -tuples.
The constructor function is (jdv  dt , ~.y.dn) :DX x D2 x ... x Dn -> D, and 
for every D- there exist unique projection functions tz{:D -► ZX.
(x ,,x2, ...,x n) (yx, y 2, . . . , yn)  just when V t< i< n .x it=D yr

D ~ D x ® Z>2 ® ... ® Dn is the so called “smash”- product
This is exactly like the Cartesian product except that n -tuples with any elements 
1  e  Di are identified with I g D .  The smash product preserves the flatness of 
domains.

D = Dx + D2 + ... + Dh constructs a new “separated” sum domain.
Elements of D are replicas of alt elements from £>(. and there is a  new ± [>€ D. 
xt=Dy  just when i c . y  and elements which originating from different sum
mands are incomparable. The constructor functions are the injection mappings 
(pD - >D;  it may be elided without ambiguity. The projector functions 
nD d :D 316 we^ defined; they are the identity when the argument origi- 
natedin DJ. and return L D otherwise.

D = Dx © D2 © ... © Dn constructs a new “coalesced” sum domain.
It is exactly like the separated sum except that elements of D are replicas of all ele
ments from Dt -  and the _L e  Di are all identified with ± D s  D. The coa
lesced sum preserves the flatness of domains.

D = Dy -> D2 is the domain of continuous functions between £>, and D-,.
The functional constructor is X -abstraction which is written Xx e  D {,form ula , and 
the functional accessor is application written as f { x }  for / e  D and x  e  D , .
As before: /i= D g = Vx c  £>,./(x) g (x).

D = pDy  constructs the natural powerdomain* over D x.
Elements in domain are sets of elements of D x representing the potential for the 
computation to be. Powerdomains are used in to represent nondeterminism, and by 
extension concurrency.
The definition o f a c fl i; is crucial to the powerdomain construction. It is related not 
only to the subset relation on the power set of £>, but is also subject to the ordering 
x y . The natural order u c v  holds when every element in u has a refinement in 
v and every element in v is a refinement of some element of u :

« c D v s ^ Vx g  u.3y e V-X^ D yj  a e  v.3x e  yj

1. Also called the convex or Plotkin powerdomain. It distinguishes nonterminating computations (Le. ele
ments of D containing l d ) whereas the upper and lower powerdomains either ignore such elements or 
identify them with ±D respectively.

107

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

These domains are known to exist because they can be retracted out of the universal 

domain. As well, each of the domain-specific constructor and accessor functions are 

known to exist The key questions about domain constructors for computational semantics 

are how _L is treated in the new domain relative to the old and whether the constructor 

defines a new class of isolated elements.

Isolated Elements

A feature of central importance in the computational analysis of domain equations are 

the existence of isolated points. These are points in a domain which cannot be approxi

mated. They are considered isolated because there are no nearby points under c  other 

than _L, which is of little use computationally. In the flat domain examples shown in Fig

ure 3-3, all of the domain elements are isolated because the relation e  treats each value as 

a distinct and unrelated quantity (e.g. in of that figure, the value 3 is entirely unre

lated to the value 4: that 3 < 4 also holds is irrelevant because < is not c ) . In contrast, in 

the non-flat domain example shown in Figure 3-4, the singleton sets {<?}, {b}, {c} and 

{d) are isolated while the aggregate sets are not (e.g. value {a,c} can reasonably be said 

to be an approximation of {a, c, d\ under the relation tr).

Isolated elements are identified through a relationship x « v which is understood to 

mean that “x is an essential component of y .” Formally x « y holds when for y cz |J  Z 

then there is a z. e  Z such that j tc * ..  An isolated point is a point a e D such that a « a ; 

it is its own essential component.

The existence of isolated points becomes relevant in the computational analysis setting 

because their existence necessarily means that there is no way to approximate them: they 

must be computed explicitly and completely or not at all. Whereas a non-flat domain has 

some isolated points among many others, a flat domain necessarily consists only of iso

lated points. This situation can potentially become even more extreme when domain con-
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structors are considered. Whether these constructors create a flat space with isolated 

points or the induce some internal structure is an important design decision at the seman

tic level. It relates directly to the applicability of approximations and limit series in the 

symbolic analysis of domain equations.

3.1.6 Focus

The previous sections introduced the basic aspects of Scott’s domain theory as it is used 

here. A denotational theory using domains is given in terms of a certain number of primi

tive domains, each of which comes complete with its own c= relation and minimal ele

ment 1 . There are domain constructors which create new aggregate domains out of 

previously-existing ones. An aggregate domains defines its own c  and 1  in a way which 

is consistent with its component domains. The information ordering c; gives rise to a 

notion of approximation wherein one domain element can be said to be an estimate of 

another. Under the direction of a monotonic functional, an estimate can be improved rela

tive to c  until a fixed point is reached. The fixed point represents the completed computa

tion of an exact representation of the domain element.

The domain theory, as presented in this section, was necessarily abstract It remains for 

subsequent sections to apply these ideas. In particular, two constructions are shown. The 

first is a behavioral domain of bisimular behaviors. It is defined in the following section. 

That example illustrates why domain theory cannot used to define fair behaviors: fairness 

in the limit is discontinuous. The second example, which is the subject of Section 3.3, is 

the exposition of a domain which supports a fixed point formulation of the forward and 

backward image computations in 8-time. This domain construction is then generalized in 

Section 3.4 to allow for a theory of time under which various classes of micro-time step 

paths can be aggregated into a single macrotime step.
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3.2 Behavioral Domains

Domain theory is intrinsically limited by its ability to express only computable func

tions. The direct implication is that any denotational definition of behavior is necessarily 

restricted to ones which can be approximated as the infinite limit of finite observations 

[5951 [597]. This is of particular interest because the domain theory is shown in this sec

tion fails to be a useful and practical tool for the definition of behavioral properties at the 

macro-step level. This is because the definition of macro-step behaviors requires that the 

abstraction mechanism of (unbounded) non-determinism in conjunction with fairness con

straints be available. * Practical examples of the use of fairness in property specifications 

were illustrated in Section 2.2 in the case of fair model checking and of course, fairness 

constraints are intrinsic to language containment between co-automata.

Fairness constraints are necessary at the macro-step level because nondeterminism, 

while a wonderful abstraction tool, typically abstracts too much. Some sort of post hoc 

constraint must be imposed to ignore (or conversely to require) certain infinite behaviors. 

Fairness constraints are therefore constraints on infinite behavior that necessarily do not 

exist in any finite approximation. This is true even in the finite state case because even 

finite state systems manipulate an infinite quantity: time. Time is a (countably) infinite 

sequence and fair behaviors arc properties defined across the whole of that co-path. To see 

the inability of a domain-based semantics to express infinite fair behavior one can exam

ine behavioral domains on sequential machines. Gordon [2981 outlines a denotational 

semantics for sequential machines which is fully abstract with respect to bisimulation 

equivalence and which can be used effectively to illustrate this limitation. This construc

tion is useful as well because the paradigm of approximation used in this section is

l. Strong fairness requires that a process which is enabled infinitely often executes infinitely often. Com
plete treatments of fairness can be found in Francez [2661, or more the accessible overviews of Emerson 
[2481, relative to computational logics, and Kurshan [454], relative to the classes of to-automata.
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repeated in the °-time approximations of microsemantics in Section 3.3.

3.2.1 The Behavioral Domain B  = IN  -» (OUT x B)

A sequential machine is a structure M  with behaviors defined over two finite domains 

IN  and OUT. Intuitively, the domains IN  and OUT are the machine’s input and output 

respectively. They may, in general, be flat domains as no internal structure within them is 

required. The structure M  is therefore defined as:

M =  <S, O, N, sQ)
where:

5 is a flat domain of states,

O.IN x S -» OUT is a function producing outputs given an input and a state,

N:IN x S  ->S is a function determining the next state given an input and a state, 

so e S is the initial state.
A behavior of such a machine is an element of the domain satisfying the equation

B = IN  —> (O U Tx B). Thus a behavior is a function which, given an input, produces 

both an output and a further behavior. Full behaviors are infinitely long chains of these 

input-to-output-and-succcssor functions and approximations of full behaviors are there

fore finite chains of such functions.

The elegance of the denotational method comes in the realization that an element i e f i  

is an infinite object yet it can be derived by a series of approximations according to the 

series:

bQ = -L

b n + 1 = *./. (* ,(£„, i) , n2( b n, i) )

and:

b = U * ,
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It is shown* that for a particular machine M  that there exists the particular function 

f M:S -> B  which transforms a state machine into a behavior as:

f M = »±F F = (0 ( i , s) , / { AT(i, s ) })

This representation which, while notationally complex, is merely the definition of the sim

ulation relation given in recursive functional form. Gordon shows that this is equivalent to 

the relational form which was presented in Section 2.2.2. The key insight behind the func

tional formulation of the bisimulation relation is that the material representations of the 

function f M can be constructed iteratively from the representations of O and AT which 

came with M.  Further, given two machines Af and AT,  their behavior functions f M and 

f M, can be constructed iteratively and their bisimularity proved by induction on n which 

is the length of paths from each machine's respective start state.

3.2.2 The Problems with B

The previous section showed a conceptually simple formulation of behavior which uses 

successively more accurate finite approximations to characterize the temporal behavior of 

M over time. This definition of behavior is elegant, implementable and has the benefit of 

full abstraction. Unfortunately however, this formulation of behavior is fundamentally 

limited in four ways. First the definition takes into account only deterministic sequential 

machines. It does not take into account nondeterminism either in the output function O or 

in the next state function N.  Such nondeterminism has been shown to be extremely useful 

in abstracting complex deterministic machines into much simpler nondeterministic 

machines. Secondly, it formulated in terms of a single monolithic machine and offers no 

obvious means of defining the coordinated concurrent behavior of two or more machines.

1. The proofs are given in Gordon [298]. They are straightforward and their mechanics are not of particular 
interest here.
2. Deterministic finite automata may be exponentially larger than their deterministic counterparts. The 
Rabin-Scott subset construction can be used, to detenninize nondeterministic finite automaton [368] (a lan
guage recognizer). Some care must be taken when reformulating this construction for the transducer case 
(Le. for Mealy machines) because determinization is not in general possible in that case [439].
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Both of these problems could be repaired by reformulating the problem in terms of an 

appropriate powerdomain construction,^ albeit at the cost of much greater notational bur

den. Thirdly, and of direct interest to formal verification, is that the formulation of ‘a 

behavior’ as a domain B  = IN -*  (O U Tx B)  fundamentally disallows the use of fair

ness constraints to simplify the representation of elements b e B.  This is because fair exe

cutions are discontinuous functions and thus cannot be approximated by any finite limit
. 2 series.

The first three limitations deal with the ability to express behavior in a denotational 

model so in a sense they are fundamental limitations to the denotational method of speci

fying behavior. Denotational specifications are necessarily restricted to elements which 

can be defined in terms of computable functions. Pragmatically this means a limitation to 

definitions of behavior that can be described cogently which in turn precludes describing 

(bounded) nondeterminism and concurrency. Thus the denotational definition of behavior 

is limited both in the kinds of behaviors that can be prescribed as well as in the compact

ness of those descriptions.

This intrinsic limitation has led the formal verification researchers to concentrate on

1. Mosses summary of the denotational method f5451 illustrates the techniques used for adding (bounded) 
nondeterminism and interleaving-based concurrency to the denotational semantics of a simple imperative 
programming language. These techniques could be applied directly to this formulation although powerdo
mains are notoriously difficult to manipulate notationally. Additionally there are substantial impediments to 
full abstraction when resumptions arc used as the concurrency operator (c.f. Mosses specific comments, 
page 625. on the ease with which Plotlcin’s Structural Operational Semantics extends to the nondeterministic 
and concurrent case).

2. Owicki and Lamport [572] explain that denotational models have historically not been used as the basis 
of formal verification schemes, their proof lattice method included, precisely because the denotation of a fair 
scheduler is a function which is discontinuous in the limit.
In turn. Uojati and Brayton’s [358] denotational semantics for the Combinational/Sequential model has a 
syntax (of “tables”) denoting transition and initial state relations. These relations in turn are said to denote 
some co-language. The limit construction, if  given, would have followed Kahn’s <a -sequence construction. It 
is left to the reader. A subset of the denoted co-language is called accepted just when it matches the exter
nally supplied set of fairness constraints.
The key is that fairness is necessarily a constraint supplied independently of the denotations constructed by 
the semantics.
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non-denotational methods of specifying behavior though possibly taking advantage of the 

finite approximation theory of denotational semantics for defining intra-behavioral com

putations. That is, the use of denotational models is restricted to the definition of the com

putations which constitute a step; these computations are necessarily finite and therefore 

computable. In contrast, the specification of behavior at the trans-step level is accom

plished in some other manner (ie . one which uses fairness constraints).

The focus on the intra-step computations introduces the fourth limitation which deals 

with feasibility o f representation, namely the feasibility of representing 

O’.IN x S  —> OUT and N : I N x S - t S  independent of whether a behavior is defined in 

terms of bisimularity or by some non-continuous means. In practice the mere representa

tion of O and N  have been problematic because of the state explosion problem. That is, in 

practice, one is not given a sequential machine M directly but rather a set of coordinating 

components which implicitly form a product machine M = r r w , . Thus without any 

further information about any intra-step structure, the denotations of O and N  are fully 

abstract and their representation in a material data structure is problematic.

3.2.3 Focus

Domain theory and denotational semantics works off the premise that any computable 

function can be approximated to an arbitrarily accurate level and that the exact result can 

be obtained by taking the least upper bound over all such approximations. This is a rea

sonable restriction when the denoted functions are to be executed. Instead, if the functions 

are to be analyzed, then it is more reasonable to want incomputable functions as the deno

tations of behavior, subject to certain constraints. The example of this section illustrated 

the need for incomputable functions in the context of a behavioral domain B . A second 

observation made in the definition of the behavioral domain B was that it was dependent 

on the existence of the uninterpreted functions O and N. These functions were expected 

to exist after the product machine M was constructed, yet the denotational semantics

114

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

gave no hint about how they might be assembled from the Ot and iV. of a group of com

ponent machines A/..

These two elements point towards an application of domain theory to the computations 

within a step wherein a (macro) step is actually approximated by a series of smaller steps. 

The following section shows that the macro step is adequately approximated by a series of 

smaller steps which exactly equal to a macro step when a certain fixed point is reached. 

This view is new. It is significant because it forms the basis for a theory of time where 

there is a mathematically-based definition of o-time. In particular this sort of o-time is 

derived from the sound principles of algebraic topology of the domain theory and is 

defined independently of any simulator event loop algorithm.

33  Microsemantic Domains

The microsemantic domains of o-time can now be stated. These domains allow for a 

macrostep to be approximated by a series of o -steps with the equivalence between the 

exact and the approximate forms occurring at the fixed point of an approximating func

tional. The construction first establishes a functional “wrapper” for the non-directed tran

sition relation which, in Chapter 2, was argued to be the basic component of any finite 

state semantics. This functional connection induces a direction onto the transition relation 

in the form of the forward and backward image computations, F  {Q\ and B {Q\, and 

establishes the notion of full abstraction relative to these computations alone. By defining 

full abstraction relative to F {Q } and B {Q} the problem of the previous section, the def

inition of trans-macrostep behavior in terms of computable function is neatly side

stepped. By limiting the semantic analysis to the image computations alone, trans-mac

rostep behavior can be defined in whatever way is convenient and appropriate. This 

explicitly makes a place for behaviors defined with the aid of incomputable concepts such 

as fairness. The focus here is exclusively within a step.
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With the definitions of the fully abstract image computations in hand it is then possible 

to reestablish their definition by approximation as F  {Q} and B {Q] in terms of the fixed 

point of their respective approximator functionals. These are £F{F} and G8a{B} which 

produce successively better approximations to F  and B respectively. Certain properties of 

the microsemantic domains are shown to be required for these approximator functionals to 

be well defined and to have a least (respectively greatest) fixed point The steps of the 

approximating series that they generate are shown to be a topologically rigorous definition 

of o-time. It then remains to show that the respective fixed points F = and 

B = v 0 o of the approximator functionals are comparable to F and B of the fully 

abstract case: namely that F°H = F and B°U. = B. Thus the computation of the fixed 

point of an approximator functional is substitutable for the fully abstract single step image 

computation when its projection onto the fully abstract space is the same functional as the 

fully abstract single step one. This is the condition of substitutability.

33.1 Functional Domains in a Relational World

In order to set the stage for the construction of the microsemantic domains, an apparent 

contradiction must first be addressed. The domain theory is based exclusively on function 

spaces, albeit spaces of computable functions, but spaces of functions none the less. In 

particular, domains are not spaces of relations. However, in Chapter 2 it was argued that 

the fundamental denotation throughout all formal methods was the transition relation. In 

fact, the bulk of that chapter was dedicated to a survey of formal methods which high

lighted the relational aspects of each. Thus, some explanation is required.

The basis for the concentration on the transition relation was its unique status as the 

existential definition of pure behavior in a step. Indeed, the transition relation is conceptu

ally but an exhaustive enumeration of the allowable moves in the system. It is fundamen

tally a static entity. This is both a strength and a weakness. The strength lies in the fact that 

a relation has no preferred direction. It describes transitions in a forward direction as well
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as in the backward direction. The strength is that the ability to compute the set of states 

which preceded a certain set of states is crucial in the symbolic analysis of finite state sys

tems. The weakness in the relational approach relates directly to the task at hand: domain 

theory is a theory based on continuous function spaces which is a concept that does not 

readily transfer over to relations directly. Thus some means of wrapping a transition rela

tion inside a directional functional interpretation must be given. This will explain away 

the seeming disparate nature of the transition relation approach argued in Chapter 2 and 

the functional approach needed here for the microsemantic domain construction. That 

functional wrapper is exactly the functional of the forward and backward image computa

tion: F{Q}  and B {£?}.

Earlier in Section 3.1.5 the domain of computable functions D = D, D, was 

defined. Its constructor was the A.-abstraction Xx e  D vformula  which created a new 

function in D . At that point the definition of a form ula  was left vaguely defined. A more 

concrete definition is given now to establish the direct connection between the (static) 

transition relation approach of Chapter 2 and the (dynamic) functional approach required 

for the domain theory.

A formula  is a sentence in the p-Calculus. This representation gives the direct connec

tion between the relational and the functional approach since relations in the p-Calculus 

are denoted by their characteristic function. The form ula  in the calculus takes the transi

tion relation and recasts it directionally thereby defining either the forward or the back

ward image computation. The exact definition of these sentences is deferred until Section 

3.3.2. The indirection step, encapsulating the transition relation within form ula , has the 

benefit that different functionals based on the same transition relation can be used for the 

two different execution directions. It has the additional benefit that the static transition 

relation becomes symbolically operational because sentences in the p-Calculus can be 

easily translated into computational recipes using OBDDs.1
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3.3.2 The Relational ^-Calculus

Strictly speaking the p-Calculus * is a logic and thus has associated notions of complex- 

ity, expressiveness and decidability. The interest here is not in those relative notions at all 

but rather in an absolute sense, in the use of the p-Calculus as a notation for describing the 

image computations in finite-state systems. The constituent elements of the logic are 

given directly.

The p-Calculus consists of sentences over two variable sets R V  and B V  where:

R V  is a set of relational variables,
B V  is a set of individual (or Boolean) variables.

A formula is a sentence classified either as Boolean formulae or relational formulae 

according to two sets of rules.

The Boolean formulae:

• true and false are Boolean formulae,
• if jc e B V  then x  is a Boolean formula,
• if p  and q are Boolean formulae then so are p v q and —>q; for notational conve

nience, p Aq ,  p = > q ,  p = q and q © q are also Boolean formulae with the tradi
tional interpretation,

• if p is a Boolean formula and x  e  B V  then 3x.p is a Boolean formula; for nota
tional convenience, Vx.p is also a Boolean formula with the traditional interpreta
tion,

• if R  e R V  and x t, ..., xn e B V  then R (x v ...,xn) is a Boolean formula.

I. Following McMillan [518] who illustrated several applications of a general p-Calculus model checker 
including a decision procedure for language containment using Biichi automata.
1. The p-Calculus is generally attributed to Park [578] [5791 with later presentations by Pratt [604] and 
Kozen [441]. The notation here substantially follows McMillan’s presentation [5181-
2. Kozen and Tiuryn’s survey [442] outlines relationships with other logics.
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The relational formulae:
• if R e  R V then R is a relational formula,
• if p  e  BV then Xxv ..xn.p is a relational formula,
• if R e  RV  and F is a relational formula that is formally monotonic * in R then 

pR.F  is a relational formula standing for the least fixed point of XR.F,
• if R e  RV  and F is a relational formula that is formally monotonic in R then 

vR.F  is a relational formula standing for the greatest fixed point of XR.F.

The sentences are given an interpretation through a structure I  -  (S., <j», vj/) where:

S is a set of states,
<jr.BV -> S associates an individual variable in BV  to a state in S,

\\r:R V -> S" associates every relational variable with an n -tuple of states from S .

Thus any sentence R can be associated with a set of states by y  (/?). Typically the defini

tion of I  is omitted because the association between formulae and the underlying set of 

states S is direct. In the sequel, the formula R and the set of states that it denotes are used 

interchangeably.

33.3 The Microsemantic Model

Microsemantic analysis is based on an extremely general model which has a finite set of 

states and a transition relation as justified by the argument of Chapter 2. The model that of 

a module M which is defined as:

M = (Q, I , 0 , T , Qq)
where:

Q = {<7,, • • • * *7/1} *s a finite set of states,

I = {/0, / j, . . . ,  ik} is a finite set of inputs,

O -  {oQ, ou ..., ot} is a finite set of outputs,

T q  Q x 21 x 2° x Q is a (possibly nondeterministic) transition relation,

Q0c Q  is a set of initial states, and possibly \Q0\ > I .

1. The term formally monotonic means that R appears under an even number of negations. A function must 
be monotonic if it is formally monotonic but the converse is not the case.
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For the most part, Q0 plays little part in microsemantic analysis. It is included in the defi

nition of M  for completeness: everything must have a beginning.

The major interest in M  is the study of Q and 2° as domains with an internal informa

tion relation c . For example, they may be flat domains, non-flat or have unobservable 

elements depending on the concurrent coordination properties of the microsemantics. As 

for 27, in a concurrent combination M { || M2 the input domain 2l of is synonymous 

with the outputs of M2 and vice versa. Thus it is sufficient to give domain constructions 

for 2°  alone while treating the i. as mere formal placeholders for as-yet unconnected out

puts.

In some cases there will be no domains 21 or 2° per se. In those cases, inter-machine 

communication is accomplished solely through distinguished dimensions of Q which are 

constructed from / and O . In such cases T c . Q x Q  and Q is a specially-constructed 

domain.

3 .3.4 Symbolic Representation of Microsemantic Models

Semantics, as treated in this work, is based on a notion of the image computation which 

establishes the set of states that a system will be in the next or previous macrostep. Tradi

tionally a semantics describes computation in terms of functions mapping singleton ele

ments in a domain. This is the “point simulation” case from Figure 1-5. A semantics of 

singleton domain elements also has an associated semantics of powerdomain elements. 

This latter is called here the image semantics. The image semantics is significant because 

denotations in the image semantics can be represented in symbolic form as sentences of 

the p-Calculus. In turn, functions computable in the logic necessarily imply the computa

tion of the corresponding subsets of domain elements. *

1. Symbolic techniques are not new: c.f. Darringer [2221 and more recently Bose and Fisher [95], Coudert 
et at. [2091, Burch el al. [1371 and McMillan [518]. What is novel here is the focus on the primacy of the 
image semantics with the point semantics being the derived notion.
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The following truth makes it possible to speak at once about the point semantics and the 

image semantics. If f:D l -> D2 is a continuous function on a finite domain then the 

extension o f f  is the function F \ $ D X —>• p D 2 over the respective powerdomains. This 

result applies even when /  injects into a powerdomain f:D { -> p D 2. It is a theorem1 

that the extension of a continuous function on a finite domain is also continuous. This 

gives rise to the following implicit relationships which are used throughout this chapter:

Q = KJQi = U  (Eq 3-6)

F{Q)  = U ^ ( 0 l} = U /U f}  (Eq 3-7)

B{Q} = K J B { Q i} = (Eq 3-8)

These equations state in sum that:

• A finite domain Q is merely the union of the partitions Q( of itself. In the limit where 
the Q( are singletons, the set Q is merely the union of the singleton elements, treated 
as sets.

• A forward image step on a set Q is the union of the forward image steps of
partitions Q{. In the limit where Q{ is a singleton, the forward image is the union of
the “point simulations” of the singletons qi .

• A backward image step is similarly defined.

Thus it is possible to describe microsemantics in terms of image computations in the real

ization that this view completely subsumes the “point” case. To reacquire the “point” 

semantics, one has but to restrict \Q\ = I and either require determinacy or make nonde

terministic choices arbitrarily. This view of semantics in terms of image steps is funda

mental to microsemantics and to the symbolic manipulation of them.

Symbolic Representations

The attraction of symbolic methods is that the size of symbolic representations is often 

entirely unrelated to the number states being processed. This makes it possible to process 

representations of huge sets of states thereby avoiding the state explosion problem. The

l. c .f Gunter and Scon [309], page 637. The proof is straightforward and is omined. It is based on the fact 
that is monotonic and every monotonic function on a finite domain is also continuous.
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current level of interest in symbolic methods is driven by the compactness afforded by 

Bryant’s Reduced Ordered Binary Decision Diagram (OBDD) [125]. For large classes of 

Boolean functions the size of its representation as an OBDD is very much smaller than its 

size in other representations; e.g. its sum-of-products form [108]. Additionally, the OBDD 

representation has the advantage of being canonical; that is, when two functions are equal, 

their representations are the same. Unfortunately OBDDs are not always compact and 

they are always strongly influenced by the linear ordering which must be given to the vari

ables in any formula. * Further, it has been shown that the size of the OBDD for any func

tion is bounded by a double exponential in the “reverse communication complexity” of a 

cross section of the circuit computing that function.

\ O B D D l f t  e  o ( a 2*r 2*r) (Eq 3-9)

Here n is the number of inputs to the circuit, uy is number of wires crossing a cut of the 

circuit in the forward direction and \vr is the number of wires crossing a cut of the circuit 

in the reverse direction. This bound and the problem of obtaining good variable orders in 

the general case has formed a serious impediment to the general applicauon of symbolic 

methods.

Since Bryant’s original publication, there have been a number of modifications, 

enhancements and reformulations of the basic data structure. Some of these arc listed in 

Figure 3-5 and indeed the proposition of modifications to the basic OBDD to address 

problems of variable ordering, canonicality and exponential blow-up remains an ongoing 

research interest. For the purposes here, there is no attempt to anoint any particular one of

1. Variable ordering heuristics remain an active research topic: [270] [75] [144] [4061 [273] [522] [271].
2. This particular result is due to McMillan [518]. Other upper bounds on OBDD sizes for more specialized 
classes of circuits (boolean functions) are given by Bryant [1261 and Devadas [2331. McMillan’s reverse 
communication complexity result has been tightened by Aziz el al. [42] [43]. In summary, OBDDs may be 
compact when a good ordering exists but there exist many common functions for which no good ordering 
exists.
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those representations as “the winner.” The focus here is the interface between the seman

tics and symbolic techniques in the general case. For that purpose, what is necessary is a 

rudimentary concept of the computational complexity of OBDD operations. These are 

listed in Figure 3-6 for the case of vanilla OBDDs, assuming using some common imple

mentation techniques (e.g. Brace et al. [1051 or Aziz et al. [371). *

Abbreviation Name References

BDD
OBDD, ROBDD

Binary Decision Diagram 
(Reduced) Ordered BDD

[4681 [I t]
[1251 [1271 [881

ADD Algebraic Decision-Diagram [461

BMD Binary Moment Diagram [128J

BDD Trees BDD Trees [5191

EVBDD Edge-Valued BDD [4551

ITEDAG If-Then-Else DAG [422| [423] [6651

LIF Linearly-Inductive Functions [313]

MDD Multi-way BDD [4171 [6671

MTBDD Multi-Terminal BDD [1961

OPBDD Ordered Partial BDD [6261 [6271 [5221

RBDD Residue BDD [432|

TDD A Signature-Cube encoding of a BDD [731

XBDD Extended BDD [4061

ZBDD Zero-Suppressed BDD [5381

Figure 3-5. Some of the Many Variants of the Binary Decision Diagram

For many of the operations listed in Figure 3-6, especially the **and-smooth” case, the 

indicated upper bounds are not often met in practice. Unfortunately however, the bound of 

Eq 3-9 is met often, especially in representations of the transition relation. Microseman

tics can be seen as an attempt to avoid that bound by approaching the problem of comput

ing forward and backward images with smaller steps using simpler transition relations. 

The minimal requirement therefore is a symbolic representation where Eq 3-6, Eq 3-7 and

1. These are the commonly-cited upper bounds [125] [105] [518].
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Eq 3-8 hold. This statement is made more precise by classifying a symbolic technique as 

either an implementation issue, an algebraic optimization or a semantic model. The con

cern here, of course, is exclusively with the last of these three.

Name Formula Cost

not 0 ( 1 )
miscellaneous boolean ops. / •  g  for c ,  =>, a ,  v, ©, = 0 ( 1 / 1  x  |g |)

equivalence f s S 0 ( 1 )
and-smooth, and-exists 3 * • / ( * )  a  g  (x ) 0 ( I / M js| x 22W)

substitute y  for x in/ f [ y / x ] 0 ( 1 / 1 )

Figure 3-6. The Asymptotic Cost of OBDD-Based Computations

An implementation issue is a technique used to enhance and optimize the performance 

of a particular symbolic representation itself. Among these can be named:

• variable ordering heuristics [270] [75] [144] [406] [273] [522] [271],
• attributed edges [539] [105],
• reference-count garbage collection [ 1051,
• breadthrfirst algorithms [433] [564] [27],
• global sharing of function graphs [393] [ 1051,
• dynamic variable reordering [394] [257] [632].

As well, the variety of different representations listed in Figure 3-5 fall into the category 

of implementation issues. Implementation issues, while absolutely essential to the practi

cal implementation of symbolic methods, arc wholly independent of semantics.

An algebraic optimization is an optimization pertaining to a particular class of expres

sions when represented in a particular sort of symbolic representation. Among these can 

be named:

• auxiliary variables [148],
• function vectors [209] [95],
• functional dependencies [371 ],
• generalizecLcofactor [208] [209].
• iterative squaring [ 136] [505],
• implicitly conjoined sets [372] [373],
• minimization [150] [166] [655],
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• partial product heuristic [690],
• recursive domain and range decomposition [208],
• structural conjunctive decomposition [ 147] [ 148],
• symmetries [391] [392].

Algebraic optimizations, while quite powerful, are highly idiosyncratic to the form of the 

expression and the particular cost of operations on that form. They are largely unrelated to 

the semantics, though whether the optimization is even relevant may implicitly depend 

upon the micro-structure of the semantics

A semantic method is one which directly and explicitly relates the denoted transition 

relation of the model to the forward and backward image computations. Such methods 

necessarily apply only in the case of an image semantics, where Eq 3-6, Eq 3-7 and Eq 3- 

8 hold. Such an image semantics is said to be direct when the macrostep image computa

tions are stipulated. It is also said to be extensional ox fully abstract. A microsemantics is 

computational when approximator functionals exist and the macrostep image computa

tions is defined in terms of their fixed points. The successive approximations generated by 

these functionals defines a finer granularity of time in a topologically rigorous way. When 

a microsemantics is not computational, then there is no such limiting approximation. This 

failure to have a limit may be for either of two reasons: either the semantics is fully exten

sional meaning that there is no approximator functional or an approximator-like func

tional exists but has no fixed points. In this latter case the approximating series computed 

by the functional has no infinite limit. An example where such is the case is the image 

semantics of VHDL (respectively Verilog) which is presented in Section 6.3.

A strong distinction is made here between these three classes because neither imple

mentation issues nor algebraic optimizations contribute much to any understanding of 

how languages ought to be designed or how their semantics ought to relate to formal 

methods.
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3.4 Microsemantic Analysis

Microsemantic analysis addresses two questions: how a given semantics defines the 

concurrent combination of one or more models Mx |( M2 1|... || Mk, and how the domains 

of each M{. contributes to the definition of a macrostep. Specifically, a microsemantic 

analysis explains the ordering and completion conditions inside a macrostep. That expla

nation is aided by the domain theory, and in particular by the information ordering 

relation c  on elements within a domain and monotonicity of microsteps relative to r=. 

The functional which performs this incremental microstep computation is called the 

approximator functional. In turn, the c= relation, monotonicity and the guaranteed exist

ence of a fixed point is used to define a rigorous notion of approximation within a step: a 

microstep approximation series is complete when a fixed point of the approximator func

tional is reached. Thus of particular interest is the internal structure of the domains Q 

and 2 ° , and how domain elements are elevated by the successive application of the 

approximator functional. Various microsemantics are distinguished by their internal 

domain structure and the conditions at which their approximator functional has reached a 

fixed point.

3.4.1 Structure of the Analysis

Microsemantic analysis follows the eight steps listed in Figure 3-7. The examples of the 

next three sections follow this outline directly. Of course, for the fully abstract case of 

Section 3.4.2, steps 5,6 and 7 are skipped because they describe how a given non-abstract 

microsemantics uses approximation to define the image computations.

These eight steps are justified by the following explanations:

Temporal Analysis

Tune in a microsemantics necessarily has some internal structure. Time is a discrete 

quantity, but there is room for different granularities of time below the macro level. The
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1. Temporal Analysis

2. Domain Analysis

3. The Primitive Transition Relation To

4. The Primitive Image Functionals Fa and Bo

5. The Approximator Functionals ^  and C80
6. The Approximated Image Functionals F  and B

7. The Projection n  to Full Abstraction

8. Observations

Figure 3-7. The Eight Steps of Microsemantic Analysis

temporal analysis describes these levels of time and the relationships between the levels. 

This analysis expresses how time is intended to behave in the microsemantics. This is an 

intuitive specification, deferring the more precise statement until Step 5.

Domain Analysis

To arrive at the desired temporal structure certain monotonicity relationships must hold 

on the elemental domains of the system. These c  relationships are defined at this stage. 

Also defined are the domain constructors that compose the elemental domains (e.g. indi

vidual outputs or component’s state) into the domain of the whole system. Whether and 

how these domain constructors preserve the flatness of elemental domains or introduce 

non-flatness into the system’s domain are the important considerations. These properties 

directly affect the fixed point of the approximator functionals in steps 5 and 6.

The Primitive Transition Relation To

The primitive transition relation is stipulated to exist. It is stipulated in the sense that 

this transition relation must be feasibly constructible for the microsemantics to be compu

tational. These transitions are the “small steps” that are chained together in the approxi

mator functional of Step 5. They form a macrostep at the approximator functional’s fixed 

point which is defined in Step 6.

127

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

The Primitive Image Functionals F and Bg

These forward and backward image computations are stipulated to exist They are based 

on the primitive transition relation To and, like it, are stipulated in the sense that they must 

be feasible for microsemantics to be computational.

The Approximator Functionals &~a and C80

An approximator functional is a conceptual control scheme which is used to construct 

successively better approximations of the respective fully abstract image functional F 

or B . They amount to control schemes or schedules for the primitive image functionals 

Fo or B0 about which precise statements about completion and exactness in the limit can 

be made.

The Approximated Image Functionals F  and B

In practice, the approximator functionals are never constructed in their own right 

Instead, they are evaluated until they reach a fixed point: F = F} or B =

At that point 5^ or C80 is said to have computed the best approximation, F  or B , of the 

respective fully abstract image functional F  or B . The approximated image functionals 

are the least and greatest fixed points of their respective approximator functionals: 

F = \i3Fa and B = v£3o.

The Projection IT to Full Abstraction

An approximated image functional F  and B is said to be a “best” approximation of F 

or B in the sense that there is no better one: further refinements using or CSg merely 

produce the same results. The approximated image functional is said to be exact when 

there exists a projection IT: Ma -> M which makes F  = F°I1 and B = B°Tl.

Observations

From the seven previous steps, some observations can be drawn about the microseman-
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tics:

The first observation is that different domains deserve different of sorts of information 

content ordering c  over o-time. Outputs ought to be in a non-flat domain that orders out

puts by “is defined.” An output which has been defined is larger than one which is as-yet 

undefined. Further, the output domain constructor should preserve this non-flatness. States 

on the other hand ought to be in flat domains where no state is better than any other. This 

is especially important for o-states. These observations are made more precise in the par

ticular examples.

The second observation is that there is a trade-off between the coordination that is 

“compiled away” within a fully abstract unit versus the complexity which is left latent in 

the iteration of the approximator functional. This plays out in the fully abstract transition 

relation being too complex to be feasibly constructed, yet its associated state space is 

clean and devoid of implementation-dependent “junk” like unobservable o-states. In con

trast, a non-abstract transition relation can be very regular and compact enough to be con

structed trivially. Its associated state space however is filled with implementation details 

like unobservable o-states and the remnants of the outputs used for intra-step coordina

tion. This can be stated in a mathematically precise way.

3.4.2 The Fully Abstract Semantics

A semantics is fully abstract when the denotations of two language elements are equal 

whenever those constructs behave the same in all contexts and vice versa. ̂  Intuitively full 

abstraction is a statement that the abstract semantics exactly reflects observable behavior 

and no more. The fully abstract semantics has no implementation details of any sort. This 

can be precisely stated using the information content ordering <= for an abstract seman-

1. This definition follows Mulmuley [550], The requirements and properties of a fully abstract model for 
the typed a .-calculus (PCF) are described in Milner [530] and Mulmuley [550].
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tics SA and a non-abstract semantics SQ (an operational semantics). Let C be an arbitrary 

“context functional.” Then full abstraction is the condition that:

Vr,r, C e  L.5A([5 o 5 0 ([C{r} U ^ S 0 [[C{f} II

Exploiting the fact that ( r c y )  a  ( y c r )  => ( jc = y) one arrives at the statement that 

full abstraction is the condition that two language elements denote the same element (the 

abstract side) when they behave the same in all contexts (the operational side).

Full abstraction therefore implicitly rests the definition of a “behavior” and a “denota

tion” since the denotations must be the same when the behaviors are the same. The argu

ment presented in Chapter 2 was that a semantics is fundamentally about mapping 

language elements to transition relations, except in some very exotic circumstances. Ear

lier in this section the forward and backward image computations were presented thereby 

giving the static transition relation a directional orientation in time. Thus the denotations 

of language elements are transition relations. As for behaviors, the behavioral domain 

constructed in Section 3.2 showed that it is not possible to use an approximation-based 

definition scheme to define infinite properties based on fairness because fairness is dis

continuous in the infinite limit. The lesson there was that a reasonable approach is to use 

an approximation-based definition for the behavior within a step and allow for some other 

(incomputable) method for specifying the trans macrostep behaviors. Thus a behavior, in 

the sense used here, is the extensional characterization of a macrostep which is just a tran

sition relation. Hence, for the purposes of full abstraction in this context, both a “behav

ior” and a “denotation” are a transition relation.

In fact, full abstraction is a precise way of stating when a semantics is a canonical repre

sentation for the behavior of its corresponding program element. Two transition relations 

operate the same way in a macrostep just when they are equal. To use the definitions given 

in Section 3.4.1 a fully abstract semantics is not computational, it is extensional and must
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be stipulated. In particular a fully abstract transition semantics uses the transition relation 

in monolithic form and offers no decomposition of i t

3.4.2.1 Temporal Analysis

In this analysis, time is discrete and has a single level. No behavior can be observed 

between time steps and there is no internal structure to a step. A step is atomic and is said 

to occur “instantaneously” with respect to the model of time. An external observer may be 

able to observe an irregular pattern to the steps, but within the model the instants are iso

morphic to the natural numbers. A fully abstract time line is illustrated in Figure 3-8. It is 

distinguished by its simplicity.

Figure 3-8. The Single Level of a Fully Abstract Time

3.4.2.2 Domain Analysis

Two flat domains were illustrated in Figure 3-3. A flat domain conveys the minimal 

amount of information about its elements in the sense that none of the proper elements 

contain any more information than any other. A flat domain D has the property that:

v 4x>^p e D ~ W  (Eq3-10)

For a fully abstract transition semantics, the domains must convey as little information as 

possible. Therefore:

• SQis a flat domain of states,
• 2 is a flat domain of outputs.

The first statement is justified by the fact that no state of M is any different than any other 

state. The second statement is justified by the fact that inter-component coordination is
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essentially “compiled away” by the concurrent combination operation. This is shown in 

the following, however intuitively this must be so because a fully abstract semantics hides 

every feature which is not extensional.

5 = {Sj, s2, . . . ,sn} is a flat domain (Eq 3-11)

2 ° =  0 0 , .  (Eq 3-12)
£ =  0

<2 = 5 , and is independent of 2°  (Eq 3-13)

3.4.2J3 The Transition Relation T  (c, n)

The fully abstract transition relation is a monolithic quantity defined in terms of the 

conjunction of the transitions allowed by each machine:

T  ( c ,  n )  =  3o . T p [ c p r  o p ,  o p , r t p J  a  T p j (  c p ,  o f ,  0p ,  n p J  a  . . .  a  T p J ^ c p , o p , o p , n p J

Each component transition relation can be thought of conceptually as consisting of two 

parts, a “pure” transition relation which determines the successor state(s) and the output 

relation which determines the outputs produced by the component in a step:

Tp  ( Cp, ip,  Op, rip) =  X p  ( Cp, ip, rip) a  O p  (cp , ip,  Op)  (Eq 3-14)

The general inter-process communication structure of a fully abstract semantics is 

depicted in Figure 3-9. There the outputs of any machine are available to all and every 

machine makes its decisions based on its internal state and the global output. The emis

sion of the outputs and the occurrence of the individual components’ transitions occurs 

atomically:

T(c,n) = 3 o. fl Tp(cp, O—, Op, Hp\ (Eq 3-15)
i = i

A fully abstract semantics is not computational because there is no way to approximate 

the transition relation of Eq 3-15.
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outputs area 
global public variable

process state is a 
local private variable

Figure 3-9. Communication in a Fully Abstract Semantics

3.4.2.4 The Image Functionals F {Q} and B {Q}

With the monolithic transition relation being given, the image functionals are:

F = XQ. (3c.Q (c) a  T(c, n ) ) [n / c ] (Eq 3-16)

B = XQ. (3n.T(c, n) a  Q (n)) [c/n]  (Eq3-17)

In application form, the two functionals compute the step image directly:

Qi+l = F {Q t.} (Eq 3-18)

Qi_{ = B{Q;} (Eq 3-19)

3.4.2.5 Observations

The key observation to make on the fully abstract semantics is that the smoothing oper

ation (the 3o in Eq 3-15) has the effect of “compiling away” the internal coordination 

within the system. What is left is a purely extensional representation of the behavior in a 

step. In a practical implementation the construction of the monolithic transition relation is 

a major bottleneck.^ This gives impetus to the design of classes of computational seman

tics which are necessarily non-abstract.

1. This bottleneck is a direct effect of the state explosion problem. Various algebraic approaches have been 
used to address this problem [209] [136] [690].
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3.4.3 A Non-Abstract 8-Time Semantics

If the problem is too much abstraction in a step and there is no internal structure within 

a step then a semantics-based approach to the problem is to introduce internal structure 

into a step. This gives rise to a notion of 5-time which is similar in spirit to the kind found 

in an event-driven simulator.* The definition of 5-time semantics here is decidedly deno- 

tational and additionally is a (non-abstract) computational semantics. The communication 

model is a generalization of that shown in Figure 3-9. The generalization is that each 

machine takes multiple steps (5-steps) in a macrostep. This introduces a restricted notion 

of interleaving wherein the execution of the machines are interleaved subject to the inputs 

which they require becoming defined. The implicit restriction on the interleavings is that 

no machine executes across a 5-step which depends on an input which has not yet 

arrived.

3.4.3.1 Temporal Analysis

In this model, time has a two-level structure as depicted in Figure 3-8. Within each mac

rostep there are an arbitrary number of 6-steps. The number of 5-steps can vary based on 

the internal state of M  or on the input given to M  in a step or some combination of the 

two. A particular chain of 5-steps is said to form a 5-path. Any 5-path may split, converge 

and reconverge with another 6-path in the 5-time level. The only restriction is that there 

be a bounded number of 5-steps in any individual 5-path. The spaghetti-like nature of 5- 

time is illustrated in Figure 3-11 in the context of the image computations.

L. The parallel is not exact. In fact, the 8-time of a discrete-event simulator is markedly different in signifi
cant ways. An analysis of discrete-event semantics is deferred until Section 6.2 since that analysis is best 
undertaken in the framework of the RMC Barrier Theorem presented in Chapter 4. Particular comments on 
the three- level model of time used in a discrete-event semantics are found in Section 6.2.3.
2. It is decidedly not clear that such an interleaving necessarily exists. The conditions on when it does exist 
is substantially explained by the RMC Barrier Theorem. That theorem is presented in Chapter 4 so for the 
moment the reader is asked to  continue in the belief that such an interleaving can exist for the classes of sys
tem having this microsemantics.
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Figure 3-10. The Two Levels of a Non-Abstract 8 -Time 

The significant aspect of the finer-granularity 5-time is that it is entirely unobservable 

outside of AT. Again the philosophical position is that the only “real” measure of time is 

macrotime. On the macrotime line events either take place instantly, meaning within a 

macrostep, or they take some time, meaning they take one or more macrosteps. Thus the 

only externally observable effect of 5-time, is to induce an causal ordering relationship 

among events that occur instantly. The causal ordering is observable at the module inter

face between certain inputs consumed and outputs produced by the model. In particular 

this means that 5-time is immeasurable (in units of macrosteps) and each 5{ is said to take 

“zero time” (in units of macrosteps).

Figure 3-11. The Number of 6-Steps is State- and Input-Dependent

3.4.3.2 Domain Definitions

The two salient characteristics of the 5-time semantics are the unobservability of the 

“5-states” and the well-definedness of a 6-path’s completion. The domains of AT are the

135

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

explicit support for these two characteristics. Therefore:

• S i s a  non-flat domain of states with a particular terrace-like structure,
• 2 is a non-flat domain of outputs with a Cartesian structure.

The internal structure of the 5-time domains depend on the particular relationships and 

interpretations of these two domain structures. Therefore some explanation of them is 

required.

The Domain S

The domain 5 has the interesting property that it must contain both macrostep states 

and 8-step states. Therefore, it must be a special kind of sum domain between macrostep 

states ST and 8-step states Ss :

Intuitively no macroslcp state sT e ST is better than any other and only one macrostate is 

chosen per macroslcp. Thus ST is a flat domain. On the other hand, there are many 8-step 

states selected per macrostep so there must be a non-trivial order within Ss so that the 

state selected in 8i can be less than the slate selected at 8t- + ,. It is not necessary to require 

that any particular order hold within Ss other than that c  define a (complete) partial

In either the forward or backward direction a 8-path must terminate in a macrostep 

state sT. In the forward direction this means the “end” of the 8-path and in the backward 

direction it means the “start” of the 8-path. Thus the following relationships must hold:

1. The practical aspects of constructing Ss so that a partial order is guaranteed to exist are covered in Chap
ter 7 in the setting of an imperative language. In a data-flow setting a partial order is guaranteed to exist 
when there is a topological order on the network elements executed within a macrostep: this statement is 
usually phrased as “combinational cycles must be broken by latches."

(Eq 3-20)

^8 ~  ( S8.’ 5S,> *"’ S8 }I - #le
(Eq 3-21)

order.
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forward: Vj5 e Ss, sT e  ST.s§ cr j (Eq 3-22f) 

(Eq 3-22b)backward: Vj5 e S5, sT s  Sr sTcz ss

Both relationships cannot hold at the same time. When constructing the domain equations 

for the forward direction it is sufficient for Eq 3-22f to hold. When constructing the 

domain equations for the backward direction it is sufficient for Eq 3-22b to hold.

To formalize this relationship a new sort of domain constructor is introduced:

D = Dx © D2 ® ... ® Dn constructs a “terraced coalesced” sum domain.
It is exactly like the coalesced sum with the addition that every y  e  D{ is more valu
able than any x  e  D/+ ,. The terrace structure is defined by the new relationships 
Vy e DgVx e  Di + l .x y .

The domain S is defined relative to Eq 3-22f and Eq 3-22 by:

The ordering implicitly refers to either Eq 3-22f or Eq 3-22b. When there is ambigu

ity, the following notation is used in the sequel to refer to the direction-specific c s :

• refers to cr5 via Eq 3-22f,
• refers to via Eq 3-22b.

O
The Domain 2

The output domain for M must represent the outputs which have been defined so far in 

the 5-path. For a single output o-t 6 O, the output may be undefined, present or absent 

from a domain looking like the one shown in Figure 3-12. This domain is of course iso

morphic to the boolean domain shown in Figure 3-3, however it is useful to think of out

put values as either having been assigned or unassigned in a step.

When considering two or more outputs, the relative defined-ness of the individual com

ponents must be taken into consideration. This is accomplished with the Cartesian product 

domain constructor. Its effect is illustrated in Figure 3-13 for the simple case of a two-out-

backward:

forward: S — S f®  Sg

s = s s © sT
(Eq 3-23 f) 

(Eq 3-23b)
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present absent

\ /
1

Figure 3-12. The Primitive Domain of a Single Output Variable 

put system. The output domain 2°  is just the Cartesian product of the domains of the indi

vidual output variables:

2° = X Oi (Eq 3-24)

<a,a> <a,p> <p,a> <p,p>

<a,±> <p,±> <±,p>

1

1  = u n d e f in e d ,  a = a b s e n t ,  p = p r e s e n t

Figure 3-13. The Constructed Domain of an Output Variable Pair

The Domain Q

Together the states and the outputs are non-flat:

Q = S x  2°  (Eq3-25)
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What is interesting about the domain of Q is how it is designed to behave, relative to c ,  

across 5-steps of an image computation. In particular the domain Q has the following 

interesting properties:

• The pre-existing partial order on 5-states means that any path across the 5-state space 
is non-decreasing;

• Paths across the 5-state space can be arbitrarily long but may not have loops in S ;
• Any macrostate is greater than every 6-state, so when a 5-path reaches a macrostate, it 

is maximal and cannot be extended;
• Defining an output increases, and this increase is maximal when all outputs are defined.

Taken together these properties on the domain Q give 5-paths a monotonic trajectory 

under forward and backward image computations. This is depicted in Figure 3-14.

qeQ

forward trajectory
backward trajectory

qeQ

8-Steps

Figure 3-14. The Forward and Backward Trajectories in the Domain M

3.4.33  The Primitive Transition Relation (c,  n)

Each 5-step is a transition and so there must be a transition relation which describes it 

As a shorthand these transition relations can be called instructions. In particular, the mon-
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iker is apt because in a 5-step there are a set of variables that change and a set of variables 

which stay the same. This is exactly what occurs inside an instruction set processor when 

it executes an instruction. An instruction’s transition relation therefore consists of two 

parts, the op part and the preserve part:

Tj°p) (c;, nr) = a relation over cf and nt that is specific to /  (Eq 3-26)

The preserve part merely relates the universe U of other variables that don’t change:

i f ' " " ' " 0 (Co, »o> = r i  (% , * «u)  CEq 3-27)
i = 1

The whole instruction is the conjunction of what changes and what remains the same.1

T,t (c, n) = Tj°p>(c h, n ,)  a  T(pr’“ " e>(c . ,  n^  (Eq 3-28)

The appeal of such a representation is that it may be possible to represent j {-preserve) 

ferently than Tj°p). In the familiar (non-symbolic) “point” execution world p(preserve) js 

vacuously represented since memory naturally holds its value unless rewritten.

Very few restrictions need be placed on the instruction transition relation of Eq 3-28. 

There is one extremely important requirement however which will be crucial to the defini

tion of the approximator functionals’ fixed point in Section 3.4.3.6. Every 5-path is 

required to have an absorbing end condition so that all the 5-paths of various lengths can 

be stretched out and aligned. The absorbing end condition is a self-loop transition on a 

macrostate that is specific to a particular direction. The idea is that when the directional 5- 

step series reaches the final macrostate of the 5-path, it gets “stuck.” This has the obvious 

effect of making every 6-path an infinite path, which in turn makes all the 5-paths the 

same (infinite) length and thereby elegantly sets the stage for 6 -time to be imbedded

L. This constraint is variously referred to as the stability property [370] or as the frame problem [1621. The 
property is quite simple: the states which don’t change remain the same. The reason why this is a problem is 
that the exposition of the lack of change must be made explicitly for each I . This representation can become 
quite large both in absolute terms and in relation to that of I .

140

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

within macrotime in a well-defined way. * The absorbing end conditions for the forward 

and backward case are depicted in Figure 3-15. In practice the absorbing end conditions 

obligation is discharged by defining the transition relation of a “halt” instruction as a self

loop and in turn requiring that every 5-path end in such a halt instruction.

forward

backward

Figure 3-15. Absorbing End Conditions for Forward and Backward 5-Paths

The transition relation of M, as a whole, is the disjunction of all the instructions that it 

can execute:

k
78(c>'0 = T t Tii (c’ n) (Eq 3-29)

/ = l

The first point to observe about Eq 3-29 is that disjunction distributes over smoothing (the 

3c and 3n steps of the fully abstract image computations). This means that in a practical

1. The reader should understand at this point that the set of 5 -step paths, both finite and infinite is a domain. 
The set of 8-step paths of finite length are the compact elements of the domain and the 5-step paths of infi
nite extent are the limit points. As defined for this special case, the limit series of approximations defined by 
8 -step paths of finite length is continuous in the infinite limit.
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implementation, the disjunction need never be explicitly computed! The T. can be kept 

disaggregated and the disjunction can be taken after the image computation as follows:

F j z e , j  = a T <c'"> )  [”/ c i

= 2 ( 3 c . 0 f(c) a T (c ,n ) )  [n / c ]

The second observation to make about Eq 3-29 is that every term T. ( c, n) depends on all•i
the variables c and n since the frame axioms (the information that stays the same) must 

be explicitly represented and processed at each step.

3.43.4 The Primitive 5-hnage Functionals Fg { Q}  and fig { Q}

The primitive 5-image are extensional and are exact replicas of the fully abstract image 

functionals:

Fs = XQ. (3c.Q (c) a  T8 (c, n) ) [n/c] (Eq 3-30)

Bs = XQ.(3n.Ts (c,n)  a  Q (n))  [c / n ] (Eq3-3l)

And in application form the forward and backward image computations are:

QSi i = f s {<2s,l (Eq 3-32)

fi5. , = «8 ( 2s.) (Eq 3-33)I - I I

By convention, forward 5-paths are numbered increasing from 0 while backward 5-paths 

are numbered decreasing from 0. This allows for the association between the old mac

rostate Qt and the “zeroth” 5 -step, Qt = , to be unambiguous for the forward and

backward directions. The new macrostate is Qi+ ( in the forward direction and Qt_ t in 

the backward direction.

The following is crucial to the development, though these facts will not be used again
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until the observations of Section 3.4.3.6. By construction, Ts has the following properties:

• absorbing end conditions for all s e  ST,
• fidelity to the partial order among states s e  S5,
• single assignment of output variables (ov  a , , o z) e 2 across 5-paths.

Thus, the following necessarily holds: *

Vi >0.Q5;c F5 {(35J  (Eq 3-34)

Vi<0.fls {<25 } e<25 (Eq 3-35)

That is, any path through Ts is increasing in the forward direction and decreasing in the 

backward direction.

3.4.3.5 The Approximator Functionals and 0 g { B }

The primitive 5-image functionals are used in conjunction with their respective approx

imator functionals, or 6?s, to define the forward or backward macrostep image compu

tation. The intent is that an approximated macrostep image functional F or B computes

the infinite limit of 5-step chains. Finite approximations to this infinite limit, of course,

consist of arbitrary-Iength 5-step chains and the approximator functionals increase the 

approximation chain by one step. The approximator functionals are:

^  = XF.XQ.F {Q} (Eq 3-36)

Cds = XB.XQ.B {Q} (Eq 3-37)

By design, a macrostep is the least fixed point of respectively the greatest fixed 

point of &?5, relative a crude initial estimate. When the approximator functionals. ^  and 

.<#5, are defined to be monotonic and continuous then successive approximations to F and 

5 , can be incrementally computed by applying the relevant approximator functional. 

Thus in application form:

l. Note that Eq 3-34 is implicitly defined in terms of the ^  of Eq 3-23f while Eq 3-35 is implicitly defined 
in terms of the of Eq 3-23b. These references are unambiguous because they are directly tied to the direc
tion of the computation. In the sequel, no further mention is made of this latent reference.
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^ / + I  = ^ ' Fi'l (Eq 3-38)

Bi _ 1 = « g { B ,l  (Eq 3-39)

The definitions and constructions of the previous sections have set up conditions so that 

Eq3 -36 and Eq 3-37 are monotonic and continuous in the infinite limit This ensures that 

the infinite limit series generated by Eq 3-38 and Eq 3-39 will have finite convergence. 

The demonstration that monotonicity and continuity hold for Eq 3-36 and Eq 3-37 is not 

obvious and requires some proof. The following remains to be proved:

^  is monotonic:

C88 is monotonic:

^  is continuous:
30

r =  U b ,1 = 0

is continuous:
X

B = U  B,
/ = 0

Indeed, that these properties hold for Eq 3-36 and Eq 3-37 is contingent upon the starting 

point of the series and the definition of e -

3.4.3.6 The Approximated Image Functionals F {Q} and B {Q }

A macrostep is the fixed point of and C8S relative to some initial crude 

estimate, * and the crudest possible estimate is the unit 5-step, F& and # 8, from Eq 3-30 

and Eq 3-31 respectively. The semantics is computational, not existential so F and B can

not be computed directly. Rather must be incrementally approximated from the initial esti-

I. The use here of a “crude estimate of F"  neatly side-steps the problem of understanding what 1  is for the 
functional domain D = Q-+Q.  From Eq 3-1. the computation of the least fixed point p requires the 
evaluation of a series commencing with the term It is clear that ±D is the “undefined function” and
expanding ^ { 1 D} gives kQ.1d {Q},  but that leaves the question of the value of 1 D [Q], for arbitrary Q . 
Is this to be 1 G, the “undefined state?” This is entirely unenlightening.
Fortunately this conundrum need not be pondered since the least relative fixed point relative to a “crude esti
mate” is sufficient for the purposes here. The relative least and greatest fixed points are guaranteed to exist 
by the construction in Section 3.4.3.3.
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mate using Eq 3-38 and Eq 3-39 as:

f0“ W s >  =K2.F5{g} B0 = ® S{BS} = kQ.Bs {Q}

= = *-Q-rs {Fs {Q}} =*.Q.Bz {Bh {Q}}

F2 = ^ s[Fl ) =\ Q. F™{Q) B 2=6as{B_,} = kQ.B™{Q)

K = a *ih+o = ^ ' ,+1)fg}

The fixed point of these series are reached just when Fn = Fn_ x and Bn = Bn+X. Fol

lowing Eq 3-3 and Eq 3-4, the upper bound of the infinite series defines a fixed point:

The starting points of these limit series is well-defined. These definitions depend on cr̂ . 

and as were defined in Eq 3-34 and Eq 3-35 respectively.

The Monotonicity of ^  and £#g

cFh and £ZS are monotonic because Fs and Bs are (constructed to be) monotonic: as 

stated in Eq 3-34 and Eq 3-35.

The Continuity of ^  and

The continuity of 5^ and £3S follows from the continuity Fg and Bs . In turn, the conti

nuity of F5 and fi5 follows from the constructed properties of Ts . The interesting behav

ior causing this is that Eq 3-32 and Eq 3-33 sensitize the “halt” transition at the end of 

every 8-path. Clearly there is some k > 0 where:

QO
~F  = v-pf ;i = U •sTf'y * « = 0

(Eq 3-40)

30

(Eq 3-41)

(Eq 3-42)

(Eq 3-43)
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Respectively there is some £ < 0  where:

Vi<k.Qs_  ̂ -  Qg 

Vi<k.Q8 i i =B5 {Qs} (Eq 3-45)

(Eq 3-44)

By construction, both of these cases are the result of the absorbing end conditions which 

were sensitized when all the elements in the respective Q* are at some final state
i

(Sj, o) e  Q. The sT sensitizes the halt instructions in Ts which gets the element “stuck.” 

These are the limit points, each of which is computable as the upper bound of an infinite 

number of finite approximations. The finite approximations are constructed incrementally 

by and 68 8. Their nearest fixed point relative to the unit step is the limit point F and B 

respectively.

3.4.3.7 The Projection FI to Full Abstraction

The projection of model elements back onto the fully abstract case is straightforward. 

The projection operator n  need only delete out the superfluous domain components: the 

gratuitous output dimension and the unobservable 8-states. The projection operator is:

The forward and backward image computations of the fully abstract case can be recovered 

directly by composing this projection operator with the computationally approximated 

macrostep image computations of Eq 3-40 and Eq 3-41 respectively:

3.4.3.8 Observations

There are three observations to be made about the non-abstract semantics of 8-time.

Serializability of Concurrent Coordination

First and foremost, this non-abstract semantics is a serialization scheme for concurrent
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F = F°n (Eq 3-47) 

(Eq 3-48)b  = £°ri

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

coordination. It uses a constrained interleaving model that exploits the monotonicity of the 

domain Q. The domain Q has two dimensions, state and output and it is (of course) 

monotonic in both.

The ordering of 8-steps is induced by the domain ordering within S8. In practice such a

8-state partial order might come from the loop-free control flow paths in an imperative

language. An example of a language with these properties is presented in Chapter 7.
The second aspect is the restriction to single assignment of outputs across 8-time. This

property is a requirement imposed by the internal structure of the output domain 2° . In

turn, it is exploited in Eq 3-34 and Eq 3-35 which declare F8 and B8 to be monotonic. It

is also implicitly exploited again in the definition of n . That projection operator is so

simple because all the “real” information is in the state component and in particular in the

macrostate. It is sufficient for II to suppress the output component because outputs are

only implicitly used to synchronize within a step. As is shown in Chapter 4, any semantics

that allows multiple assignments to outputs in (its version of) 8-time will not have a well-

defined projection to full abstraction.

Outputs in the State Space

This semantics stores output values in an orthogonal component of the state space Q . 

This is explicitly not the case in the fully-abstract semantics of Section 3.4.2. In the fully 

abstract case all the outputs and their coordinating effects are “compiled away,” leaving 

the monolithic transition relation. Here the macrostep transition relation is kept in disag

gregated form as the 8-step transition relation T8. The output components are stored in 

the state element across 8-time. The projection n  erases them and makes them unobserv

able in macrotime. In contrast with the fully-abstract case, outputs and their coordinating 

effects are not “compiled away,” they are explicit and unevaluated by the semantics.
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The Illusory Nature of F  and B

The presentation of Section 3.4.3.5 worked from the premise that F and B would be 

iteratively approximated by successive application of ̂  and until no change resulted: 

when the test Fn = Fn_ l and Bn = Bn+l returned “true.” That presentation, if imple

mented as stated, would require a representation of functions where equality could be 

tested. Defining such a representation for higher-order functions could be problematic.

In practice only a weaker form of F and B are needed. Rather than requiring a general 

of F and B that computes the macrostep image for any element of the domain Q, it is 

sufficient to construct an approximation of F  and B relative to the specific Q( at hand. 

Call these Q. -specific functionals F and Ba respectively. The following development1 V£» V i

constructs these element-specific functionals and shows their relationship to the general 

case.

Recall that the old macrostate is referred to as 50 :

f t  -  f t .

Also observe that the first 6-step elements arc:

0 5, = F8 {QSo} (Rq 3-49)

0 8 , = *8 108„> (Eq 3-50)

Examining Eq 3-43 shows that when Eq 3-42 holds then Qs is a least fixed point of Fs 

relative to Q8 of Eq 3-49. Respectively an examination of Eq 3-45 shows that when Eq 3- 

44 holds then Q8̂  is a greatest fixed point of Bs relative Qs of Eq 3-50. These proper

ties allow for the macrostep image computations relative to Q. to be defined. These arc 

denoted FQ and B^ respectively. They are never constructed on their own but appear in 

application form exploiting their special property of being, in application, a relative fixed 

point of their respective primitive image functionals.
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In application form they are:

<2,»i = K j lQii (Eq 3-51)

Qi-i  = h { Q i )  = vQ B5 (Eq3-52)
5

These specific definitions should be contrasted with the general definitions of Eq 3-40 and 

Eq 3-41. The significance of these two equations is that material representations of F  and 

B need never be computed. The element-specific functionals F and B0 can always be
vs,

used in their place. Presumably there are efficient symbolic representations for the Q{ 

which were lacking for the F, and Br

3.4.4 A Non-Abstract cr-Time Semantics

This second example of a non-abstract semantics adopts the view that macrotime is not 

made up of an arbitrary-yet-finite number of smaller steps, but rather is made up of an 

explicit number of subdivisions. In fact these subdivisions form a schedule under which 

specific components of the system are activated. The schedule is called here a  and the 

form of time that it induces is called a-steps. The computational model of the microse

mantics is a network of generalized gates. ̂  A network of such gates is depicted in Figure 

3-16.

The behavior of a gate is fully abstract in the sense that it is specified solely in terms of 

its transition relation. A gate’s transition relation may be nondeterministic and there may 

be combinational feedback among the gates. The cr-time microsemantics explains how 

the forward and backward image computations are defined in terms of individual gate

1. The Combinational/Sequential model of Hojati and Brayton [ 107] [358] is an instance of this class of 
computational model. A more detailed analysis of the Combinational/Sequential model is presented in Sec
tion 5 3  of this work.
2. The explanation of how such seeming inconsistencies are resolved is interesting in and of itself: the 
inconsistencies are implicitly ignored by the microsemantics in the sense that the inconsistency is never 
observable outside the system. An explanation for this subtle effect is presented in Section 4.4.5.
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Figure 3-16. Communication in a Non-Abstract cr-Time Semantics 

components.

Of note in this microsemantics is that the schedule cr is entirely artificial. There are 

some broad constraints placed upon cr by the network structure, however there are a 

whole spectrum of possibilities for it. The selection of an appropriate schedule has been 

called the quantification ordering problem and has been extensively investigated [690] 

[107] [140] [43]. As such the presentation of this section is best viewed as an explication 

of existing techniques in the framework of computational semantics. Also, it should be 

obvious that the trivial schedule of one step is (almost) directly the full abstract semantics 

of Section 3.4.2. A return to these points is made in the observations of Section 3.4.4.8.

3.4.4.1 Temporal Analysis

In the cr-time model, time has a two-level structure as depicted in Figure 3-8. Within 

each macrostep there are a fixed number of cr-steps. This number, call it it, is a static 

function of the network connectivity, being related to the depth of network from the pri

mary inputs. The rigid nature of a-time is illustrated in Figure 3-11.
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Figure 3-17. The Two Levels of a Non-Abstract a-Time 

The principle of unobservability at the finer granularity applies here as well. The cr- 

steps are entirely unobservable outside of M  in this microsemantics just as they were in 

the 8-time microsemantics of Section 3.4.3. The only externally observable effect of cr- 

time is to induce a causal ordering relationship among the input/output elements.

Figure 3-18. The Number of a-Sleps Are Defined by the Network Structure

3.4.4.2 Domain Definitions

The two salient characteristics of the cr-time semantics are the unobservability of the 

internal cr-steps and that each cr-path has the fixed length k which is dependent upon the 

network structure. The domains of M provide the explicit support for this, ensuring that a 

fixed point of the approximator functional occurs in exactly k steps. To ensure this, an
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artificial schedule domain I  is introduced, therefore:

• I  is a vertical chain of length k ,
• S  is non-flat a product domain of internal and external elements with a m axim al ele

ment T in each subdomain.

The internal structure of a-time domains depend on the particular relationships and ele

ments in these domains so some explanation of them is required.

The Domain Z

The domain Z is the schedule. It is a finite set of elements which form an increasing 

chain:

I  = { o , , o 2, . . . ,o fc} (Eq 3-53)

By convention o Q = ± , representing that the 0-th step of the schedule gives no informa

tion at all. The domain Z is a finite vertical chain with the following order:

VO < i< k .G i^ a i+l 

Also, define the auxiliary functions:

(Eq 3-54)

succ = Xo. '

if then if then

Q III Q o CTt q ill q o

o  = o, a 2
pred = A.O.'

0 = 0 , CTo
... ... ... ...
CTsCT* -i <*k O s o fc_ Ck-.

(Eq 3-55)

The Domain 5

The construction of the state-domain S  is a bit subtle because it must support the defini

tion of monotonic functions that have the property of abstraction. That is, it must be possi

ble to define monotonic functionals over S which remove the “definedness ” of their 

arguments. This operation is motivated by the need to “undefine” (make “irrelevant”) cer

tain coordinates of S within a o-step.
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However, a monotonic functional which both introduces and removes (abstracts) defini

tions is infeasible in the direct sense. Using the terminology of Section 3.1, given domain 

elements s c r ,  a function /  is monotonic when f ( s )  c / ( r ) .  This means that the same 

monotonic function which “defines” can not also “undefine” because if /(J_) = s and 

f ( s )  = _L then /  is non-monotonic. This motivates the use of a trick: an improper ele

ment T which is the dual of 1  and is taken here to mean “irrelevant.” Thus /(J_) = s 

and f ( s )  = T and /  is monotonic.

Let the “prototype” state domain ST be a flat finite domain with a unique maximal ele

ment T as well as a unique minimal element _L in the usual sense:

S'p — {Sp , Sp , . . . ,  Sp } (Eq 3-56)

The structure of ST is depicted in Figure 3-19. Its flat nature means that every state is 

incomparable to every other, yet it is possible to define monotonic functionals which can 

be said to “perform abstraction” on ST. These functionals predictably have both a forward 

and backward interpretation and are defined as follows: ̂

The p-Calculus existential quantifier is here extended to the domain ST in a way which 

precisely models the intuitive notion of making c , respectively n , irrelevant in S.

Consider the two-element subdomain shown in Figure 3-12. Treating that domain as 

primitive and considering a Cartesian pair results in the domain shown in Figure 3-13. In 

that domain it is always possible to define a monotonic function /  which moves from a 

first element a  where the c-coordinate is defined and the n-coordinate is undefined to a 

second element 3 where the c-coordinate is irrelevant and the /i-coordinate is defined.

1. Assuming that c is defined on the boolean domain.

3 r =  X c . X S . S _ l j S  _
/  C - iC

3h = Xn.'kS.Snr \S  „o  n  - i  n

(Eq 3-570 

(Eq 3-57b)
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T

Figure 3-19. The Lattice Structure of Sj.

Let Sin, Sc and

domains:

s tm
i

= X S.
i = 1

Sc
m

= X s 7
1=1

Sn ~■V

(Eq 3-58)

(Eq 3-59) 

(Eq 3-60)

Thus, Sin will be the “internal” and Sc and Sn will be the “external” states of the sys

tem respectively. The external variables are visible to external observers. When they are 

read, they can be considered to be available at time ct0 and when they are written they 

can be considered to be defined by a k. The internal states are not observable to external 

observers; they are written and read wholly within the a-schedule. Presumably Sc and Sn 

are similar because they are the present-state and next-state components of the macrostep. 

The complete state domain of M  is a cartesian combination of the three:

5 = Sc x Sin x Sn (Eq 3-61)

The projectors are nin:S Sin, %c:S -> Sc and itn:S -> Sn respectively.
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/  \
b

\ /
1

Figure 3-20. An Example of the Primitive Domain Sj-

The Domain Q

The domain Q of the model involves both the schedule and the states:

Q = £ x S (Eq 3-62)

Its projectors are tzz:Q-+1. and ns :Q -* S  respectively.

3.4.43 The Primitive lYansition Relation (c , n)

The transition relation at a particular a-cycle is the product of the generalized gates 

scheduled for that time slot:

Tq ( c Ci, nG) = a relation over c G and nc; which is specific to G (Eq 3-63)

N
T„M ,n)  = U Ta ( c a ; nc )  (Eq 3-64)

/  = I

J , _  . c states to make irrelevant I /r, ^cr = 1 (c, 211 . . \ (Eq 3-65)
( T the transition relation J

Presumably the succ and pred  functionals have absorbing end conditions such that: 

forward: succ(ak) = a k, 7 ^  = true, ca  ̂ = 0 .

backward: p re d (ct0) = <5Q,T a = true , ca = 0 .
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What is significant about this formulation is that the Ta for 0 < / < k are all entirely 

unrelated. The purpose of the a-schedule is to iterate over Ta performing the actions indi

cated by Eq 3-64. Communication occurs through the sharing of variables across the 

scheduling steps a , .  The “smoothing variables” c represent the coordination variables
i

that have already been defined, consumed and will never be used in a future s c h e d u l i n g  
step. They are “smoothed out” with the existential quantifier functionals Eq 3-57f and Eq 

3-57b, thereby setting their coordinates to T.

<T,T>

<T,a> <a,T><T,b> <b,T>

<a,b> <b,a> <b,b><a,a>

<a,_L> <b,_L> <l,a> <_L,b>

1

1  = undefined, T= ir r e le v a n t

Figure 3-21. The Utility of 1  and T in the Domain S j  x S j .
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3.4.4.4 The Primitive cr-Image Functionals { Q }  and { Q}

In this microsemantics the primitive <r-image functionals apply the relevant element of 

the schedule, namely a . from Eq 3-65, returning that result and a sort of “continuation.” 

The continuation indicates which element of the schedule to compute next In the forward 

case this continuation is computed by succ (ct) and in the backward case by pred  (o f) . 

The primitive cr-step functionals are:

Fa = t o ,  Q-3jCa- (succ (<j) , Q (c, n) a Ta (cg, na) ) (Eq 3-66)

Ba = Q 3 bna. (P ^ d  ( a ) , Ta (ca, na) a  Q ( c , n ) ) (Eq 3-67)

In application form they define the o-time as:

.( (Eq 3-68)

= S . io .e * ,!  (Eq 3-69)

3.4.4.5 The Approximator Functionals F)  and SSa{B )

The approximator functionals are, again, merely control skeletons which are designed 

to apply the primitive apply primitive cr-image functionals:

= XF.Xa, Q.F {c,Q}  (Eq 3-70)

C8a = XB.Xa, Q.B {a, Q} (Eq 3-71)

3.4.4.6 The Approximated Image Functionals F {Q }  and B {Q}

The approximated image functionals are the least and greatest fixed points of Eq 3-70 

and Eq 3-71 respectively:

F = p F̂  (Eq 3-72)

B = vB C8a (Eq 3-73)
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By construction, these fixed points happen at cycle ak. At that point the following rela

tionships hold:

h  = Bt =

F = Ft B = Bk

3.4.4.7 The Projection II to Full Abstraction

The projection back down to the fully abstract case is actually straightforward given a 

simple observation. That observation is that all the real information is in the external 

space Sn . By definition all the internal space Sin and the components of the previous 

macrostep Sc have been sent to T. All that is necessary is to substitute from Sn to Sc and 

then project away the unobservable internal components. The full abstraction projectors 

are as follows:

Tlf  = XQ. nc{ tis {Q [n/c] } } (Eq 3-740

Ub = XQ. 7i„{ 7ts {Q [ c /n ] } } (Eq 3-74b)

This leaves but to compose the projection functions with the approximated image func

tionals:

F = F°nf  (Eq 3-75)

B = B °n b (Eq 3-76)

3.4.4.8 Observations

There are three observations to be made about the non-abstract semantics of cr-time.

Semi-Serializability of Concurrent Coordination

The generalized gate network model is a combination of serialization and concurrency. 

The microsemantics allows the image computations to “compile away” states which are 

used only for internal coordination once their effect is known and consumed. As such the
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feasibility of computations using this microsemantics are strongly dependent on the con

nectivity within the network.

In general, communication dependencies are dense within a gate. Within a gate, each 

output element depends on many, if not all, inputs. In contrast, the communication depen

dencies at the inter-gate level are often quite simple. It is known* that certain sparsely con

nected structures such as rings, linear arrays and trees have good schedules cr. On the 

other hand, coordination structures which are densely connected often do not have good 

schedules.

Output-less State Space

In the generalized gate network model there is no explicit domain of outputs perse. All 

the domains are really domains of states. This can be seen in the domain definition of Eq 

3-61 which defines the domains of all the “wires” in the network as members of the state 

domain. There is a distinguished domain of previous states Sc, a distinguished domain of 

output states Sn and of course the domain of internal wires Sin. The outputs of the gener

alized gates appear either in Sn or Sin. In particular the transition relations of gates, as 

defined in Eq 3-63, are atomic in the sense that they merely relate the gate inputs to gate 

outputs. Thus when there is nondeterminism in the network, it is directly translated into a

multiplicity of states which are stored in an intermediate Qa . This is a potential source of
/

state explosion in Qa during the steps of a schedule. “ This form of nondeterminism can 

be said to be “imperative” because it is only exposed during the steps of an approximated 

image computation. In contrast the nondeterminism of the fully abstract case can be said 

to be “declarative” because it exists statically in the Xp or Op of Eq 3-14.

1. c.f. Aziz et a i [42] [43] which summarize several classes of network connectivity based on their own 
analysis. Previously-published results are also summarized there.
2. In fact, it has been observed that it is often best to artificially determinize such networks with a minimal 
number of unconstrained inputs [653].
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In contrast, the transition relation of the fully abstract semantics of Section 3.4.2, 

defined in Eq 3-14, had two components a “pure” transition relation X (c, /, n ) and an out

put relation 0 (c ,  i, o) . In that case the nondeterminism was “declarative” in the sense that 

it existed as a static element in either X  or O . Significantly, this sort of declarative nonde- 

terminism is exposed and resolved instantly within the single macrostep. It does not result 

in the same lands of intra-step state explosion.

Illusory Nature of the Domains I  and S j

The presentation of the cr-time microsemantics may seem a bit odd at first. In particular 

there is the scheduling subdomain I  defined in Eq 3-53 and the oddly-shaped prototype 

state subdomain ST of Eq 3-56. Both of these items are rarely found in material form in 

actual implementations of cither physical devices or formal analysis packages. That being 

the case, the obvious question then is why they are in the domain analysis of the microse

mantics?

The answer to this question is subtle and lies with how domain and domain elements 

must be interpreted in the real world. Domain equations are not direct specifications for  

synthesis, that is they are not minimal descriptions of the concrete elements which any 

conforming implementation must have. Rather, they are mathematical structures which 

are used to precisely explain the computations being performed in the sense that the expla

nation is rigorously defined relative to a theory of computation and is minimally con

straining in the mathematical sense of not containing gratuitous restrictions. Domains, by 

construction, contain at least one and possibly more improper elements which are used to 

denote mathematically relevant quantities. These elements denote quantities such as “is 

undefined,” which is written here as JL and “is irrelevant,” which is written here as T. 

When a topologically-defined function space (a mathematical structure) is used to model 

notions of computability in the precise sense, such elements are necessary and indeed are
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required. This of course begs the question of how these domain elements encoded when 

the topologically-constructed function space is turned into a specification for synthesis.

It may be the case that in a particular implementation setting certain domain elements 

can have a trivial and even vacuous encoding. A common example of this is the 

element _L which is taken to mean “is undefined.” That any set can be made into a flat 

domain by putting _L underneath every element does not imply that there must be a spe

cial distinguished encoding for _L which is stored in memory elements or in the symbolic 

form. In the precise sense what _L means is a promise, or a requirement, not to make deci

sions based on the value. As such _L can be encoded arbitrarily so long as the surrounding 

computations are faithful to the precise meaning of the element. In the case of J_ this 

means that the surroundings must never make decisions based on the value in that position 

at that time.

Analogously, the improper element T need not have an explicit encoding either. Its 

encoding may remain implicit in the same way by the agreement of the surrounding com

putations to never read the (actual) value in that position at that time. This implicit encod

ing is faithful to the precise meaning of T as denoting that the value is “irrelevant” or 

contradictory.

Extending this idea even further it can be observed that the schedule a  can be encoded 

in this implicit way so long as the particular implementation is faithful to the precise 

meaning of a. Actually the domain £ with its k  schedule elements <r; , its vertical order

ing <r(. c  + t and the functions succ and pred are merely describing, in the language of 

topology, that certain activities happen in a certain order (as described by the element of 

the function space which computes that order). As such, a conforming implementation 

could dispense with the material representation of <r with the understanding that the 

behavior that it controlled was implicitly encoded in some faithful way. In a physical
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device, the schedule cr is implicitly implemented by the causal flow of time. In a formal 

analysis package, where one has the freedom to manipulate time in a non-causal way, the 

schedule a  can be faithfully implemented by evaluating the primitive image functionals 

in the indicated order.

Computations described in terms of domain equations often require domains containing 

improper elements or noisome control components. These are required to complete the 

definitional aspects of the topological spaces that are being manipulated. The power of the 

denotational method is that it precisely states the computations which must be performed 

and the relationships which must hold. The denotational theory is precise in the sense that 

it does not require any particular encoding for those computations or relationships. As 

such, any encoding which provides a faithful representation of the domain element’s prop

erties may be used. Faithful encodings are extremely convenient for improper domain ele

ments which don’t have an obvious material form. Indeed, the general utility of temporal 

or vacuous encodings for domain elements cannot be underestimated.

3.4.5 Focus

Microsemantic analysis was introduced in this section as a structured means for orga

nizing and understanding microsemantics. Three semantics were analyzed in this way and 

shown to have particular properties. The first was the fully abstract transition semantics of 

coordinating Mealy machines. The microsemantics of full abstraction was shown to 

“compile away” all of the coordination between components and to define a single-level 

discrete time. The two semantics which followed were non-abstract and were of interest 

because they were computational.

The second microsemantics defined the time line with a two-level structure. Its finer 

granularity was called 5-time. The 5-time was completely unobservable at the macrotime 

level and there could be an arbitrary number of 5-steps in a macrostep. The relationship
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between 5-time and macrotime was a fixed point of the image approximator functional. 

The microsemantics of 5-time represented coordination activities explicitly in the transi

tion relation and outputs were but a coordinate of the 5-state space with a special non-flat 

domain ordering. This simplified the transition relation T8 at the expense of a larger state 

space (most of which was unobservable in 6-time).

The third and final microsemantics had a two-level time as well. Its finer granularity 

was called c-time. The a-time was unobservable at the macrotime level as well however 

there were a fixed number of o-steps in a macrostep. The relationship between o-time 

and macrotime was that a-time was k  times as fast as macrotime. This semantics was 

computational because its approximator functional was well-defined. In fact, the 

schedule a  was shown to force a fixed point on the approximator functional at exactly the 

&-th step. The microsemantics of cr-time represented coordination activities implicitly in 

the network of generalized gates. The interconnection among the gates allowed for the 

derivation of the schedule a  in such a way that the unused intermediate state components 

could be abstracted away. This microsemantics was shown to be a denotational formaliza

tion of the well-known quantification ordering problem.

3.5 Review

The presentation of this chapter has outlined computational semantics as a framework 

for understanding the interface between a language L and its fully abstract model M  or its 

non-abstract model Ma. Computational semantics extends the argument of Chapter 2 

where the transition relation was argued to be the fundamental essence of a semantics. 

However, a transition relation is a non-directional entity so the concept of denotations was 

extended here to include a directional component in the image semantics defined by the 

forward and backward image computations F {Q} and B {Q}. Computational semantics 

is the framework in which statements can be made about when a non-abstract semantics
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Sc can be said to substitute for the fully-abstract case. The condition of substitutability 

was shown to be the existence and well-definedness of a projection n  which, when com

posed with So obeyed the relationship S = So° n .

To show this, Scott’s domain theory was presented as a means of connecting the concept 

of multi-step computations being equivalent to a final result with the already-established 

notion of approximation, continuity and limits from algebraic topology. This required the 

definition of domains which were, in simple terms, a (not necessarily finite) set D where 

a relationship c= and certain limits and consistency conditions were known to hold. In par

ticular there was always a minimal element l e D .  This distinguished element represents 

the undefined or unspecified value and is called an improper element because there need 

not be a material representation for i t  The concept of a monotonic and continuous func

tions was defined on domains: a function is monotonic if it preserves a function is con

tinuous if it preserves monotonicity in the infinite limit. Monotonic functions on finite 

domains are necessarily continuous; continuity requires that infinite results be determined 

by the limit of finite approximations. This characterization of functions in turn allows for 

the notion of an approximation to be defined wherein any computable function can be 

understood as the upper bound of a (possibly infinite) limit series of approximations to the 

final result.

Continuity is a subtle concept for it necessarily precludes a definition of fairness. 

Because unbounded nondeterminism coupled with fairness constraints is discontinuous in 

the infinite limit. This was shown in the construction of a behavioral domain satisfying 

B = IN —» (O U Tx B) in Section 3.2. Fairness is far too attractive a paradigm for this 

“result” to be used as a proof of its nonviability. So if computational semantics was not 

directly useful in defining trans-macrostep behavior, then perhaps it could be used to 

define behavior within a step. Having a means for approximating a macrostep by a series 

of smaller steps, o-steps in the general case, would be useful both as a means for explain-
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ing when certain finer granularities of time such as 8-time or a-time were well-defined. 

Such a theory could be used in practical implementations to avoid the many practical bot

tlenecks of full abstraction.

Microsemantic domains and microsemantic analysis was the framework used to con

struct macrostep image semantics which were defined in terms of iterated microstep 

image semantics. The key to microsemantics were the internal structure of the microse

mantic domains and the t= relationships that held within those domains. The <= relation

ships of course implied monotonicity which was used to define the approximator 

functionals and C80 for forward and backward image step. In turn, the least and great

est fixed points of these functionals, SF and vfl £80, relative to some initial estimate 

Fo and Ba were established as the approximated image computations F{Q]  and B {Q} 

corresponding to F {Q} and B {Q} respectively. Two non-abstract microsemantics were 

studied in this framework, the 8-time corresponding to the semi-interleaved executions of 

an abstract machine an the a-time corresponding to the execution of a generalized gate 

network according to a precomputed levelized schedule.

The microsemantic analysis showed that a semantic map So induces a fine structure 

onto time. In the fully abstract case, this fine structure was vacuous and so time only had a 

single level. In the case of the non-abstract semantics, the structure of time was much 

more interesting. Both of the non-abstract microsemantics studied in this chapter had a 

two-level structure to time. In the case of the 8-time an arbitrary number of 8-steps were 

embedded between the macrosteps, while in the case of the a-time a fixed number of a - 

steps were embedded between the macrosteps. In both cases the microsemantic structure 

between the macrosteps was always finite and well-defined. However it must be pointed 

out that there could exist microsemantics in which the microstep behavior need not be 

either well-defined or finite. The possibility of three-level time or even multi-dimensional 

time was not explored in the microsemantic framework developed here. In fact three-level
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microsemantics and multi-dimensional time do exist in the semantics of discrete events 

and the denotational model of the SL Languages respectively. Their presentation is 

deferred until after Chapter 4 where certain intrinsic limitations on the microsemantic 

approach are explored.

The whole point of non-abstraction is that a non-abstract semantics contains extra idio

syncratic artifacts which can be ignored in a well-defined way. Once ignored, what 

remains is the canonical definition of the semantics: the fully abstract case. Implementa

tion details are ignored through a projection map IT:A/o M  that hides the details. This 

establishes the path 5o°n  of Figure 3-1 and in that context substitutability is the condition 

when S = 5a°n  for some L 'c L  and A fcA f. Unfortunately, it turns out that there are 

strong limitations that force the containment of L  and Af to be proper for any semantics, 

although the closeness to equality is strongly dependent on the particulars of the microse

mantics Sg. Those limitations are the subject of the following chapter.
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Limits on Microsemantics

Despite the range of microsemantics that can be defined, there are some hard limits on 

the amount of internal structure that can exist in a semantic model. This chapter reviews 

the three aspects of internal structure in semantic models: responsiveness, modularity and 

causality. The origins of these properties are shown in Figure 4-1. The key insight here is 

that despite the convenience of computational semantics as defined in Chapter 3, the 

approximation approach brings along with it some mathematical baggage that just cannot 

be removed by the projection n . This statement is formalized in Huizing and Gerth’s 

RMC Barrier Theorem [378] which states that no semantics, no matter what its internal 

microstructure, can be responsive, modular and causal all at the same time. This places 

severe constraints on the approaches to the design of languages, semantics and models.

L Causality

Modularity

M = (Q,T)
Responsiveness

Figure 4-1. The Origins of Structural Properties in Semantics Models
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The formal proof is presented here for two reasons. The first is that the concept of a lim

itation on the internal organization within a semantic model is certainly not intuitively 

obvious; a proof is therefore required. A more practical reason for including the proof is 

that I present it here in terms of the p-Calculus notation rather than the process algebraic 

formulation used in Huizing and Gerth’s original formulation. The importance of this 

notational change is that the process algebraic notation expresses the conditions using a 

point-wise or depth-first notion of computation. The p-CalcuIus notation on the other 

hand expresses the conditions using a breadth-first relational style. As such, the proof 

relates directly to the OBDD-based algorithms which are assumed throughout. Seen in 

terms of the p-CalcuIus notation, the RMC barrier shows that the limits on structure in 

semantic models carry over directly to limits on structure in transition relations repre

sented symbolically as OBDDs.

4.1 Orthogonal Aspects of a Semantics

The RMC Barrier is defined in terms of three orthogonal properties of a semantic mod

els: responsiveness (/?), modularity (M) and causality (O. The preceding sections have 

illustrated that, except for some very non-standard models, all semantics is given by a 

(possibly infinite) transition relation. The focus here is exclusively on the linite-state case. 

There, a transition relation is a set of tuples relating the current state, the input, the output 

and the next state of the structure. Using the multi-valued variables c . /'. o and n to rep

resent values in these respective spaces, the transition relation is given by the characteris

tic function of the set: *

1. It is an interesting irony that the transition relation which was argued to be fundamental in some deep 
sense in Chapter 2 is defined in Eq 4-1 in terms of a process algebra notation! This is expository and related 
to the notation used in Huizing and Gerth’s original proof of the RMC Barrier Theorem.
The process algebra notation is not fundamental to the development here. It is used where it affords some 
clarity over the relational notation. The development here is such that R. M . C and the mutual incompati
bility of the three can be understood exclusively in relational p-Calculus notational framework and thus its 
relevance to OBDD-based symbolic methods can be directly inferred.
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T  = { (c, /, o, n) [the transition Q (c) Q (n) is valid} (Eq 4-1)
' ( 0

The notational convention used here is that T  is written as T(c, i, o, n) to emphasize the 

dependence on the four variables c , i, o and n . A decomposed view of the transition 

relation T gives its dependence in terms of a basic transition relation X  relating the cur

rent state and the input to the next state, and an output relation O relating the current state 

and the input to the output:

T (c, i, o, n) = X (c, /, n) a  O (c, i, o) (Eq 4-2)

Without the loss of generality, X  must be complete in the sense of enabling a transition to 

some next state on every possible input:1 3c, n .X (c, i, n) = I . This is the fully general 

form where the output of the machine is dependent both on the current state c as well as 

the input i . Eq 4-2 is that of a Mealy machine. The Moore machine where the output is 

dependent only upon the state is:

T(c, i, o,n)  = X (c, /, n) a  O (c, o) (Eq 4-3)

The properties R, M and C are conditions on the compatibility of X  and O under compo

sition. The following sections reiterate the definitions of the RMC properties and enumer

ate these conditions in terms of the transition relation T.

4.1.1 Responsiveness (R)

A system is considered responsive if the system’s output comes simultaneously with the 

input that causes it. A semantics is responsive if it is possible to define a responsive sys

tem in the semantics. This is a condition on an instance of a semantics: it is an existential

1. Kurshan (c.f. [454], page 116) argues that incompleteness is a “flaw” in the description of any actual sys
tem. A construction is outlined that removes such flaws without removing any infinite behaviors.
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statement about a system definable in the semantics. This condition states that in some 

state of such a system, it is possible to distinguish the input given to the system by virtue 

of examining the output that it produces. That is, it is possible to exactly characterize the 

input given the output. The condition concerns the possibility of defining a system with 

this property. It need not be true of all systems or of all states of a given system. It need 

only be true of one state in some system.

Let / ,  (i) identify a nonvacuous subset of the inputs in such a system with transition 

relation T. Let Ox (o) be a nonvacuous subset of the outputs similarly. Define the rela

tional operator O { / Ox} as:

d> {/ p O x} (c, /, o) = 3n.T(c, /, o, n) a  /, ( / )  a  <9, (o) (Eq 4-4)

Define d> {lv  O ,} (c, /, o) similarly. A responsive state is one where there exists input 

sets /j (/) and I2 (/) and outputs Ox (o) and 0 2 (o) such that the outputs differ based on

the inputs. The following definition specifies this condition independently of the state in

the form of a constraint on the generalized input/output relation: 1

eo
Ti u' 0) =

( / , ( / ) © / , ( / ) )  A  ( 0 , ( 0 )  © 0 , ( 0 ) )

A

( f , ( 0  = > 0 , ( o ) )  a  ( / , ( 0  = > 0 , ( o ) )

With these definitions, the responsiveness property R (/, o) is:

(Eq 4-5)

RU,o) = 3 /,,/2. O,, 0 2.3c.
50 . 
d i U' 0)

(Eq 4-6)

This equation holds just when there is at least one state Q (c) where input-dependent out

puts can be observed. As such, responsiveness is a structural condition on the separability

1. I thank Rick McGeer for pointing out relevance and cogency of the Boolean difference notation in defin
ing the generalized responsiveness condition.
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of the basic transition relation X  and the output relation O . This can be seen by examin

ing Eq 4-6 with the transition relation for a Mealy machine (Eq 4-2) and a Moore machine 

(Eq 4-3).

Mealy Machines

Taking the expansion of Eq 4-6 in the Mealy case of Eq 4-2 case first:

R{i ,o) = a /j ./y O j, 023c.

3n.T(c, t, o, n) a  f l (i) a O , ( o )  

®
(  3n.T(c, i ,o,n)  a  / , ( / )  a  0-,(o)

dO
gjU,o)

(Eq 4-7)

Expanding through the existential quantification of the next state n gives:

R(i .o)  = 3/j, O v 0^3c.

T(c. i ,o)  a  / j  ( 0  a  0 , ( o )  

( T(c, i ,o)  a  / , ( / )  a £ ) , ( o )

A

ao . 
di ’°)

(Eq 4-8)

By using the identity of the generalized cofactor, that f c ( jc)  = f ( x )  a  c  ( y ) ,  produces a 

function / c (*) which is not dependent on y  ̂allows Eq 4-8 to be rewritten as:

RU.o)  = 3/l,/2.o l.o2.(3c.(T#iAt,i(c)®r/iAO>(c))A§>(i,o)) (Eq 4-9)

The first term of the conjunction, the existential quantification, identifies a state Q(c)  

which has two (disjoint) transitions out of it on / O l and l^/O-, respectively. The sec

ond term, the boolean difference, constrains the values of the I x, I2, 0 { and On as per Eq

1. In fact, any function f c satisfying /  a  c  q / c  q / v c  is sufficient. The justification for the generalized 
cofactor can be found in Brown [ 120] under the treatment of orthonormal expansions. Several implementa
tion methods have been proposed [208] [690].
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4-5. This expression identifies the transition structure shown in Figure 4-2. Clearly such a 

structure can be created in a Mealy machine.

L / O

I J O

Figure 4-2. The Responsive State Transition Structure R(i,o)

<!> (c, i, o) may also be considered to be an aggregated representation of a state-depen

dent partial order <e(c) (/, o) in the sense that operationally, for the chosen state Q (c), 

the indicated inputs must be available to the machine before its outputs can be computed. 

This interpretation of 0  as a partial order is critical to the proof of the RMC Barrier The

orem.

Moore Machines

Taking the expansion of Eq 4-6 in the Moore case of Eq 4-3 one gets:

fl(»\o) = 3Iv l y 0 v 0 23c .

3 rt.

3 n.

X(c , i. n) a  O (c, o) a  

/ , ( / )  A  0 , ( 0 )

' X(c, i,n) a  O (c, o) a  ^

M i) a02(0) J ,

50  . 
e i t,,0)

(Eq 4-10)

Removing the existential quantification over n as before:
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R(i,o) =

3c.

X(c,  i) A  Ofc, 0 )  A  / j  ( 0  A  0 j  ( o )  

©
(  X (c, / )  a O ( c , j )  a  M O  a O , ( o )

A

SO .
3/

(Eq 4-11)

And applying the generalized cofactor as before:

K( «\ o)  = B / p / p O p O , .

3c.

X, ( c )  A  ( C )1
0

 ̂ X, (c) A  0 O ( C )

50
dl O', o)

(Eq 4-12)

Since X  is complete by definition, the following identity holds: X, (c) = X, (c) = 1.M l2

This leaves the expression:

R(i.o)  = 3 /j,12- o ,, 0 2.

3c.Ofli (c) © 0 Q (c)

30
a7(*.o)

(Eq 4-13)

This form makes explicit that there must be some state Q (c) which can potentially output 

either O, (o) or <9: (<?). For this to be true, it must be the case that the statc(s) Q(c)  

found by the existential quantifier (the 3c term) have the following property in the output 

relation 0 ( c , o ):

Q(c ) a Ox(o) a O , ( o )

' S  O (c, o) (Eq 4-14)

Q(c) a  O L ( o )  a 0 2 ( o )

In other words, for a Moore machine to be potentially responsive it must have a nondeter- 

ministic output relation. But in such a case, the input which causes either output cannot be 

exactly characterized by examining the output. That the output is undetermined by the
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input is the very definition of non-determinism (with respect to outputs). In contrast, a 

Moore machine with deterministic outputs^ is non-responsive since it associates a unique 

output with each state. In the context of Eq 4-14 this means that there is but one conjunc

tive term. Thus there is no non-vacuous 0 2 (o), different than Ot (o), against which a 

difference can be observed. In that case Eq 4-13 is tautologically false: no state construct- 

ible in the semantics can satisfy the requirement of R (i, o). The responsiveness property 

is thus exactly the distinction between a Mealy machine and a Moore machine.

A semantics is responsive just when R (/, o) is not tautologically false.

4.1.2 Modularity (M)

A semantics is modular if the rule for aggregating components into a whole obeys the 

property that all parts of the system can be treated symmetrically, inclusive of intra-com- 

ponent communications and component-to-environment communications. Further, every 

part of the system must have the same view of the instant-to-instant computation. Modu

larity is fundamentally an information hiding property that the communication between 

two components is accomplished solely via the values on outputs. In particular modular

ity prevents communication from occurring via any intra-step order in which the outputs 

are produced or via any multiplicity of values assigned on the outputs across a step.

This statement describes the separability of the aggregate transition relation in forward 
2image computations.

t. The usual definition requires determinacy [3681, though nondeterministic case can be made well-defined 
by a mild condition of independence between inputs and output selections [454]. Failing that, a nondeter
ministic Moore machine is actually the Mealy case phrased in a backwards sort of way (i.e. nondeterminis- 
tically select the output and then identify which input must have allowed that output to occur).
2. For reasons of clarity, the syntactic substitution operation, [n/c], is elided from the forward image com
putation in this chapter. This is done without loss o f generality.
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F {Q} = 3c, /, o.Q (c) a  T (c, i, o, n) (Eq 4-15)

The modularity condition governs the separability of F {Q } when generalized for concur

rent composition with Q = Qx x Q2 and T = Tx x T 2 . In the case of the state variables, 

c and n , the variables of the aggregate are just the concatenation of the variables of the 

parts:

c = (Cj, c,)
, \  (Eq 4-16)

n = (nv n2)

The composite state Q = Qx x Q2 is just the conjunction of the characteristic functions 

of the component states. The component states are automatically “raised” to the product 

space because the sets are represented by their characteristic function:

Q(c) = Q ( c v c2) = (<2t x Q2) ( c x, c 2 )  = Qx (Cj) a 0 2 ( c 2 )  (Eq 4-17) 

It must be noted that this raising operation may not be implicit for certain symbolic repre

sentations, e.g. the ZBDD [538].

For the case of the input and output variables, the two systems are connected together 

with the inputs being available to both. The outputs of the first are available to the second 

and vice versa. The input variables / and output variables o are merged together and 

called the input/output variables io. This is illustrated in Figure 4-3.

The input/output variables of the whole are defined as the concatenation of the variables 

of the parts:

zoj = ( i , o x)

io2 = (/, o2) (Eq 4-18)

io = ( i ,ov o2)
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o

I

I
i

Figure 4-3. The Communication Structure of a Concurrent Composition 

In this light the transition relations for the components are:

The composite transition relation T = Txx T 2 is just the conjunction of the component 

transition relations:

T (c, io, n) = (7\ x  T2) (c, io, n)

= (T, x  T2) ( c , ,  c2, i, o x, o2, nx, n2) (Eq 4-20)

= Tx ( t  j, iov nx)  a  T2 ( c 2 , io2, n2)

The effect of the modularity condition on the forward image computation F {Q} can now 

be stated:

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

Tx(cx, io2, o x, n x) = X x(cx, i o2, n x) a  0 , (cp i, o x) 

T~2 (C j i  o 2, /J j )  =  X2 ( t i l  ^ 4 p  / i j )  ^ F)2 ( c 2 , i, o 2 )
(Eq 4-19)

F{Q} = 3c, io.Q ( c )  a  T(c, io, n)
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F  { Q x x QoJ =  3c, io. ( Q x x  Q2) ( c )  a  ( 7 \  x  T2) ( c ,  io, n)

= 3c, io.
 ̂ (7 , (cp io, n x) a  7, (c2, io, rt2) )

This last term can be rewritten by expanding the definition of the transition relation T in 

terms of the basic transition relation X  and the output relation O as:

F {Q\ * Qi) — 3c, io.

(Q{ x  Q 2 )  ( c )

X l ( cv io2, n l) a  O, (c,, Wj)

X2 (c2, iox, n2) a  0 2 (c2, io2)

This in turn can be rewritten to separate the expressions for the progress according to the

Tx and T2:

F{Q\*Q-,}  = 3c, io,

( Q x x < 2 2 )  ( c )  a  

X x(cx, io2, n x) a  Ox{cx, i o x) a  

0 ,  ( c 0 , ion)

(Qx x  Q2 )  ( c )  A
X2 (c2, /O j ,  n 2 )  a  0 2 (c2, / 0 2 ) a

Oj (CpiOj)

Recollapsing the definition of the transition relation T :
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F{ Q i * Q 2} = 3  c,io .

r  (  N ^
(Ql * Q2) (c) a

 ̂ r ,  (cp io, n {) A 0 2 (c2, io2)

a (Eq 4-21)
\

(0 !  X Q2) (c) A 

 ̂ I  T2 (C2> W2) A ° \  (c l* io \)

Eq 4-21 states that the forward execution of the composite machine is defined wholly in 

terms of the forward execution of the components. The separability of the two computa

tions is rests solely on the dependence of the basic transition relations X { and X2 on the 

whole set of input/output variables io = (i, o {, o2) .

Another way of stating the modularity condition is that the execution of either compo

nent is completely determined by the outputs produced by the other component. The sub

stance of Eq 4-21 is that the behavior of a component is determined as i f  the outputs o f its 

sibling were already present when it starts its reaction. In the process algebraic notation 

this can be written as:

O,
<Qx,Qf>_ <Q\, Q2> (Eq 4-22)

and

a
<Q V Qn> < Q {, Q \>

7 u O ,

implies the composite evolves according to

O, u  0-
< G , ,  Qn> - >  - < Q \ , Q \ >

I

(Eq 4-23)

(Eq 4-24)

The modularity condition implies that a component’s execution is independent of any fine 

structure within its sibling. Such a fine structure might include the production of the out-
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puts in a specific order or allowing an output to adopt multiple values in a step.

4.1.3 Causality (C)

A semantics is causal if the outputs have the property that there is a state-dependent par

tial order relation <Q(i,o) that respects composition. The partial order describes that 

input I  (0  causes output O (o) from Q ( c ) . In terms of the relational notation, the state- 

dependent partial order can be derived from the output relation as follows:

o) = 3c.Q (c) a  O (c, /, o) (Eq 4-25)

There is a <Q (/, o) for every state Q in the machine, each of which may be different.

That the partial order is respected across composition is the condition that the partial 

order for the composition <qxq(1, o )  is more restrictive than any component partial 

order <Q (ip oj) as follows:

-G .x e^ ’ 0) s  -G,( / i’ °i>

-G,xG2(/’ o) e  -Qr^v ° i)  (Eq 4-26)

An equivalent statement is that the causality relation for the aggregate Qx x (7, can be 

derived from, and therefore is consistent with, the causality relations of each components 

Qx and Qv  Causality is transferred from the components to the composite in a consis

tent manner.

4.2 Theorem of the RMC Barrier

With these definitions the Theorem of the RMC Barrier can now be proved.

Theorem [378]

No semantics can be responsive, modular and causal without also being inconsistent.
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Proof Outline

A semantics defines a class of systems. A semantics defines the possible transition rela

tions T that can be constructed using its rules. Therefore the claim applies to an arbitrary 

transition relation T (c, i, o, n) . The proof starts from the definition of a semantics as the 

set of rules from which transition relations are constructed. A semantics is therefore, by 

definition, self-consistent and conflict free. Further, the definitions of the previous sec

tions show that the R, M  and C properties in singleton are self-consistent The theorem is 

proved by showing a contradiction occurs when R , M  and C appear together in the 

semantics.

In an RMC  semantics, there must exist at least one system with a transition relation T 

that exhibits all the properties R , M and C. It is shown by a judicious construction of this 

system that all the properties R, M and C in the semantics necessarily implies a contra

diction. Yet a semantics is, by definition, a contradiction-free set of rules for constructing 

transition relations. Therefore, since this construction can always be accomplished in any 

semantics which is RMC,  it must be concluded that no semantics can have the properties 

R , M and C all at the same time.

Proof

Because T  is responsive there exists some state Q x and a transition Q{ -» Q\  which on
a

input a gives output b  and no other input gives output b . Similarly, there exists a state

Q2 and a transition (22-> Q \  • Again, no other input gives output a . This implies that the
b

output relation contains elements:

Qx(c) a  ({a} s i )  a  ( { b }  =o) c  O (c, i, o)
(RMC-1)

Q 2 ( C)  A ( { b }  Si) A  ( {a} = o) c O ( c ,  /, o)

Because T  is causal there exists a partial order <n (i,o) and <n li,o) describing 

which input values cause which output values for the states Qx and Q2 respectively. The
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partial order contains the elements:

= { (a, b) } (RMC-2)

% 0 ,o )  = (0 b,a )} (RMC-3)

To demonstrate the effect on <e (/, o) and <gp', o) under composition, copy the sys

tem and compose the two copies. The transition relations of the two copies of T  are 

labeled 7, and T2 respectively. Let the variables for the composite be defined by 

c = (cp c2), n = (nv n2), a concatenation of the variables of the components. The 

internal communication structure is as shown in Figure 4-3 which is just a modification of 

Figure 4-3. There, the inputs and outputs of and T2 are connected to each other as 

oT  ̂= i'Ti and or  h iT . The output of both components arc concatenated to define the 

output of the composite o = (o,, a,).

o

i

Figure 4-4. The Communication Structure of 7^ || 7^

The state and output variables are as one might expect, concatenations of the compo

nents. As the outputs of both components define the output of the whole, there are no vari

ables left over to become the input vector. The input variable vector for the composite is 

vacuous. This is denoted by defining / as the empty tuple of variables i = ( ) .  *
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The transference of causality under composition is a subtle but important point and the 

whole of the proof rests on it. Modularity requires that each component T{ and F2 behave 

solely on the basis of its communication with its respective environment In this case, the 

environment of each component (say F,) is completely defined by its sibling (say T2) and 

the external environment The construction undertaken here has produced a composite 

Fj || F2 where the component outputs are exported. By construction the composite has a 

simple set of inputs: none. By virtue of having a vacuous input set the composite is said 

to produce outputs spontaneously with respect to its input. This must be reflected in the 

causality relation <T (| r  (/, o) for the composite.

Because F is modular the composition of F, and F, is well-defined. By construction,
£

each component of the system contains respectively, the two transitions Qx -> Q \ and
a

Q2 -> Q'2 • The modularity property guarantees that there is a transition in the composite 
b

that evolves in a manner consistent with the following two relationships:

In relational terms RMC-6 is written in fully expanded form as:

(2l(^l) A  ( (0  a 0 A  ( [a) 30,)) A  ( {b} 3 Oj) aQ', (/!,))

T<Qx.Qz>-*<Qx.Qi>̂C' i'° 'n  ̂ = A (RMC-7]
( { M C2> A t ( 0 a , > A t  s » [ ) )  A ( ( a )  3 0 , )  A g ' j t / I , ) )

1. The whole of the proof could be carried through with a non-vacuous definition i = (ia, /p, .... »a) as well. 
The consutution of i is immaterial to the proof save that /' is disjoint from o .

(RMC-5)

(RMC-4)

Thus the composite evolves according to:

(RMC-6)
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Expanding and collecting terms:

r <G,. Qz>->«?,.Qi> (C’ '• ° ' n)

0 , ( c , )  a  ( 0 b / )  a  (  { a }  s o , )  a ( T , ( / i , )  a  

Q\{Cy) A  (0  5 1) A  ( {b} 30,) A

02(c2) a (0 a O A ( {°} s oz)
A

01 (C2) A (0BO A  (  { 6 }  s o , )  a Q ' 2 ( / | j )  a  

0 2 ( C , )  A  ( 0 B / )  A  ( { a }  s o , )  A  

0 ! ^ , )  A  ( 0  3 / )  A  (  { 6 }  3  0 , )

(RMC-8)

Collapsing according to the definitions of X  and 0:

X ,  ( c , , / o , * / I , )  A  0 ,  ( c , ,  / ,  O , )  A  O ,  ( c „ /,  0, )  

A

X ,  ( C , ,  / 0 , «  / I , )  A  / ) ,  ( C , ,  / ,  0 , )  A 0 , ( C , , / .  0 , )

(RMC-9)

And collapsing according to the definition of 7  as 7  = X  a  O is:

T <Qx, Q,> -+<q\ ,  Q\> ( c ’ ^

7, (c p io, n ,) a  <9, (c2, i, o2)
a  (RMC-10)

. r 2 (c2, io, n2) A  0 , (c,, Oj)

RMC-10 can then be used directly in the forward image computation of Eq 4-21 as:

f { 0 ,x02) = 3c,/o.( (£>, x (/,) (c,.c,) A 7'<0i>e,>.><0.it0.,> (A/.O.H)) (RMC-ll)

F{0! x 02} = 3C*,0-
( 0 |  x 0 2 )  ( <ri ’ c 2) A  r ,  ( c , . / o . n , )  a  0 , ( r , ,  i o , )

A

I  ( 0 1  x 0 2 )  ( c , , c 2 )  A f , ( c , , / o , / i , )  a O , ( c , , / o , )  ,

(RMC-12)

RMC-10 and RMC-12 shows that the composite 7, || 7, makes a transition in an instant 

spontaneously with respect to its input set i. The causality relation for Qx x (2, is, by 

these equations and the modularity property, stated as:

-0 ,x02(/’o) = { ( 0 .  <*.«>)} (RMC-13)

To prove that a semantics can be all of R, M and C at the same time it now only suffices to
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show that the composition T. || T2 has a partial ordering < (/, o) that respects the

partial orders of both the components <e (/, o) and <e (/, o) and also obeys RMC-13. 

However, this claim is contradictory.

From RMC-13 it is observed that the value <b, a> occurs on the output o = (op on). 

Its occurrence is, by definition, consistent with RMC-13. From RMC-2 it is observed that 

ox<o2 which reflects that b on o{ causes a on o2. From RMC-3 it is observed that 

o2 <o t which reflects that a on on causes b on o , . But o x* o n because the two wires 

are not connected.

This is a contradiction. Because this construction can be followed for any RMC semantics, 

it must be concluded that there exists no semantics which is all of Responsive (R), Modu

lar (M) and Causal (C). Q.E.D.

43  Microsemantics

The previous section gave a proof for the RMC Barrier Theorem in a very general set

ting. Specifically, the RMC Barrier Theorem is phrased in terms of the cycle-to-cycle 

behavior that can be described in a semantics. No mention was made in either the defini

tions of/?. M or C or in the proof about any fine structure that might exist in a transition 

relation T other than that of a decomposition in terms of the output relation O and the 

pure transition relation X. A common fine structure one might find in a semantics is a 

two-level scheme where the cycle-to-cycle behavior is given in terms of an approximation 

by a series of smaller transitions. The upper level is called the macrosemantics and the 

lower level the microsemantics. The steps at the different levels are referred to respec

tively as macrosteps and microsteps.
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4J.1  The R, M  and C Properties

A semantics can be crudely characterized in terms of which properties appear and 

which do not. The notation used here is that R, M  or C is written if the semantics is 

responsive, modular or causal and R, M  or C if it lacks that property. So while a seman

tics that is fully RMC is impossible, there are other possibilities such as RMC, RMC  and 

RMC with various micro-level alternatives within each characterization. Before examin

ing how microsemantic structuring rules imply the properties R, M and C, it is worth 

reviewing from a practical perspective why each property is desirable in a semantics.

Responsive

The definition of responsiveness ( R ) states that it is possible to construct systems where 

the input to the system can be distinguished by examining the output. At the macroseman- 

tic level, responsiveness is simply the Mealy machine condition, that O is given as 

0 (c ,  i, o). The Mealy condition implies that the output value is computed based on the 

outputs given by sibling components. At the microsemantic level this implies that the 

decision of which output value to give can be made during the course of a chain of 

microsteps, while the decision of about the successor state is being computed. In contrast, 

a semantics which is R necessarily expresses outputs in a macrosteps in a form which is 

independent of other components’ outputs as O (c, o). As such, the decision of which 

output to give is conceptually made before the decision about the successor state is made. 

This is the fundamental distinction between Mealy and Moore machines and relates to the 

compactness of system descriptions possible in the semantics.

Modularity

The definition of modularity (M) states that the macrostep behavior of a component is 

dependent only on the outputs that are produced by the component’s concurrent siblings. 

As such, the macrostep behavior of a component can be understood solely in terms of the
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macrostep behavior of its siblings. In contrast, in a semantics which is M, the macrostep 

behavior of the component is dependent upon something else other than the outputs pro

duced by its siblings. Commonly, this dependence is upon the order in which those out

puts are produced within a macro step.

Causality

The definition of causality (C) states that there is a state-dependent partial order 

<q (1,o) among the microsteps which is also respected under concurrent composition. 

The partial order is an ordering among the microsteps where the macrostep behavior of a 

composition is simply the mutually interleaved ordered execution of the microsteps of 

each component. In a semantics which is C, at each microstep, the possible successor 

microsteps are dependent only on previously computed microsteps. For a semantics which 

is C, the noncausality condition implies there exist microsteps which depend upon then- 

own future within the macrostep.

4.3.2 Micro States and Output Variables

A two-level semantics defines the macrostep transition structure and outputs with a 

series of microsteps. Over this series of microsteps decisions about the successor mac

rostate and the output are made. There is a subtle difference between the macrostep transi

tion relation T and the microstep transition relation T& . In the former case there is a 

qualitative difference between the state variables and the output variables. In the latter 

case the output variables become part of the state space of the system, though in a local 

and constrained way.

Eq 4-2 defined the macrostep transition relation T  as the conjunction of the basic transi

tion relation X  and the output relation O. In the macro-time framework, the basic tran

sition relation X  defined the relationship between state variables c and n . The output 

relation O declared the relationship between states in variable c and input/output pairs
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(/, o). The state variables c define the configuration of the system and are fundamental in 

the sense that the state completely defines the system at any given instant (hence the 

name). The outputs on the other hand are associated with the state and can be separated 

entirely from it.

For a series of microsteps to define a single macrotime step, there must be some condi

tions placed on the transitions at the micro-time level. In particular, the outputs must be 

consistently maintained across multiple microsteps so that the chain can be seen to aggre

gate into the macrostep by ignoring the details of intermediate micro-states. At the micro

time level the variables c5 and ns must encompass not only the microstate but also the 

outputs as well. Thus in micro-time the variables c5 and ns have a state component as 

well as an output component. This is stated as:

CS = (C/j, Cq )
, 2 \  (Eq 4-27)

«5 = (nQ, n 0)

In particular the microstcp path between two macrotime states Q and Q  can be decom

posed into a series of transitions between micro states. Some of these micro transitions 

contribute to the definition of the outputs and some merely contribute to the selection of 

the succeeding macrostate. Informally these transitions can be classified as output-defin

ing or successor-deciding. A path from a macrostate through the microstates to another 

macrostate can therefore be written as:1

l. Huizing and Gerth [378] define an elaborate process algebra style notation which expresses state-transi- 
lions Q -> Q \ inputs I , outputs O and the enabling condition [£]. Their notation for a macrostep is

O ° n  ° \  ° i  °n  i
Q - f  [£] Q  and for microsteps Q -* [£0]<?i - f  {E{lq2 - f  ■■■-?' t ^ n - i l ^  ~fQ’

'O ' l  ' Z  n - l  ‘n

Their process algebraic notation is left in favor of the relational ^-calculus one which relates more directly 
to an effective symbolic computational procedure.

187

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

where:
O = U 0 f

5,

The two features that distinguish the various two-level semantics are the ordering of the 

output-defining microsteps relative to the successor-deciding microsteps and the consis

tency conditions E ^ \ c s) that hold across the microsteps. Intuitively, R (non-responsive

ness) corresponds to an ordering requirement that all output-defining microsteps can 

occur before all successor-deciding microsteps. The M  and C properties are governed by
(cD)

the subtleties of the consistency conditions Es (cs) .

The condition O represents a policy on the enabling conditions at each 5-step. In gen

eral the policy conditions can be quite subtle even to the extreme of being path-dependent
a a __

on the whole microstep path 8 . The policy consistency function is written as O (8). This 

leads to the definition of the microstep transition relation T8 in terms of two components: 

the basic microstep transition X6 and the enabling conditions E^0) that must hold for the 

transition to be valid. This defines the microtimc transition relation as:

.x

rs (C8> "a) = A XS (CS’ ns) (Etl 4'28)
8 .I

There is no microstep output relation 0 8 analogous to the macrostep case because the 

output component is entailed in the state component variable definitions of Eq 4-27.

43.3 Microstep Paths

Within this framework a microsemantics corresponds to a choice about the policy func-
  .x

lion O. The function 0 ( 8 )  controls the internal ordering of the output-defining and suc

cessor-deciding microsteps and also the microstep-to-microstep consistency conditions in 

the enabling predicate Eg*6*. In the development of the examples semantics in the next
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(<t>)section each semantics is given by exhibiting the term Es in the transition relation Ts

from Eq 4-28. In this sense the actual definition of <t> is incorporated in the definition of

the per-microstep enabling predicate Es . The function <t> merely provides a recipe for the
«

construction of Es for each step 8f. .

(<t>)In Eq 4-28 each Es defines the conditions when a particular basic microstep transi- 
»

tion Xs , among all the possible disjuncts of Ts , is a valid microstep. The enabling condi

tions are phrased in terms of the output status or the output value that is present at 8. or
^ _

will be present at some Sy. on the path 8 for i < j . The output status is one of u n d e -  

f in e d ,  p r e s e n t  or a b s e n t  for each output according to the domain from of Figure 3- 

12. The output status and value is represented in the output part of the microstep state vec

tor c5 as defined in Eq 4-27. *

The important distinction between the status and the value is that the they are two sepa

rate entities which may be specified independently of each other within microtime.^ When 

output variables are restricted to single assignment across the microsteps of a path it may 

be sensical to refer to the value of an output variable before it has been assigned. On a 

given path 8 when there is only one possible value that an output variable can adopt no 

ambiguity can arise. This situation is illustrated in Figure 4-5. From the perspective of 

the macrosemantics where a whole path of transitions 8 is collapsed to a single transition

1. In an actual realization of any semantics, the decision about whether there is an explicit encoding for the 
states un d a f in e d ,  p r e s e n t  and a b s e n t  is idiosyncratic. It may or may not be necessary or convenient 
to make the elements of the domain explicit. In particular, an explicit representation for the information 
ordering is used in the development in Chapter 7.
On counterpoint, the traditional implementations of the example semantics described in the sequel use an 
implicit representation of the status. In such cases, the implementation guarantees that no output is read (or 
tested) before it has been written. This guarantees that the output is never referenced while in the u n d e 
f i n e d  state.

2. This independence gives rise to output value domains consisting of a single value. In such cases only the 
status is of interest, that being one of u n d e f in e d ,  p r e s e n t  or a b s e n t .  A prototypical example of such 
a case are the “pure signals” in Berry’s Esterel [791 [295].
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the subtlety of the (causal) ordering of the output definition and any test of its value is 

abstracted. Only a single consistent output value is seen across the macrostep.

x:=9

Q, Q

Sensitizable 
Unsensitizable 

Let “s ” be an “</’ test; let be an assignment 

Figure 4-5. An Output’s Status and Value are Independent

Also illustrated in Figure 4-5 is the path Q0 -> Q2 which is contradictory. It describes 

at Q2 that the following must hold; (x = 3) a  ( x  s  5). This is false for all possible values 

of x. The various semantics are distinguished by the conditions in which maintain 

consistency across the path 8 and which constrain when an output’s value can be refer- 

enced in relation to that output’s one definition on the path 5 .

The variables cQ̂ in the output part cQ contribute to the terms of the condition £ 5(ct>). 

The conditions are expressed in terms of the output variable cQ referring to the value or 

the status. The output value predicate is the equivalence of an output Ok to some constant 

v as follows:

c0j = v (Exp 4-29)
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(<t>)
On a more abstract level, the Es may merely refer to the status aspect of the output*

cQt = present (Exp 4-30)

cQ̂ = absent (Exp 4-31)

The conjunction of Exp 4-30 and Exp 4-31 is the most significant:

(̂ c0(S absent) v present)

This would be tautological except that there is a third alternative which is u n d e fin e d .  

Thus the expression that requires that the value of an output has been set is:

— undefined) (Exp 4-32)

Having an explicit test for u n d e fin e d  is crucial to the development which follows. 

When used in an enabling condition E5 , Exp 4-32 requires that the output cQ be 

defined, either p r e s e n t  or a b se n t,  before the transition Xs is valid. The conditions
i

(CD)
£ 5 are predicates made up of conjunctions and disjunctions of Exp 4-29, Exp 4-30, Exp 

4-31 and Exp 4-32 over a subset of the outputs. The interesting output subsets are:

• All outputs Ok of all machines.
This is denoted by \/Ok .

• All outputs Ok defined on microstep paths terminating at 8(. .
This set is denoted by \/Ot e 80 .

• All outputs Ok defined on microstep paths 8 which run through 5j .
This set is denoted by \ /o k e 8 •

43.4 Example Microsemantics*

In the following sections, every microsemantics is assumed to be given by a primitive 

image computation F& {Q} and fl5 {Q } as per Eq 3-30 and Eq 3-31 with the macrose-

l. The development here follows Huizing and Gerth’s [3781 though, again, the notation used is the p-Calcu- 
lus instead of a process algebra. The characterization in Section 4.3.4.5 is new to this presentation.
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mantics of F {Q] and B {Q} defined according to Eq 3-40 and Eq 3-41. This is relaxed in 

Section 4.3.4.6 when a three-level microsemantics is presented. Until that point, each 

microsemantics is distinguished solely by the form of the enabling and consistency condi

tions in the term and as such can be characterized by exhibiting only the form of the 

terms of E ^ .

43.4.1 Example of R M C  (Coordinating Moore Machines)

The simplest semantics is that of a network of communicating Moore machines. The 

microstep policy function <t> requires that the output of all the Moore machines be defined 

before any machine makes a transition. Intuitively, each machine has at least two 

microsteps 80 and 5X. On 5Q the machine defines its outputs while on 5^ the machine 

decides its successor state. A generalization of this model to multiple output-defining 

microsteps 80 , or to multiple successor-deciding microsteps 8X is straightforward.

E ^  = £ ( c 0  a  undefined) (Ex-4.3.4.1-1)
vok

E ^y  = f [ - - ( c 04-undefined) (Ex-4.3.4.1-2)
vot

These conditions state that any output-defining microsteps is enabled while any output 

remains undefined. Further, the successor- deciding microsteps are enabled only after all 

outputs of all machines are defined. This ordering is depicted in Figure 4-6.

5 o S0 8X 80 8X
T T T0 l 2

Figure 4-6. The Microstructure of Time for Example 4.3.4.1

192

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Responsiveness

By inspection it can be observed that all output-defining microsteps are enabled and 

must occur before any successor-choosing microstep is enabled. By definition the input to 

a machine Mi is the output of one or more other machines M.. Ex 4.3.4.1-1 shows that 

there is no way to refer to the output of another machine before all outputs are completed. 

Thus there is no way to produce an output pair on a given machine so that the input to that 

machine can be distinguished. The semantics is R .

Modularity

The modularity condition revolves around the separability of the macrostep transition 

relation T into an output-defining component O and a basic transition relation X. The 

essence of this is summarized with respect to F{Q ) in Eq 4-21 which states that the 

behavior of a component is determined as if the outputs of its siblings were already 

present when it starts its successor-deciding transitions. Ex 4.3.4.1-2 requires that no com

ponent begins a successor-deciding transition until all components have defined their out

puts. The semantics is M.

Causality

The causality condition requires that there be a state-dependent partial order <Q (/, o) 

which is respected under composition. The semantics is symmetric with respect to all pos

sible states Q and requires that all for all components, outputs become defined before any 

component refers to its inputs. The <q (/, o) can be given as the state-independent iden

tity relation = (/, o ). The semantics is C.

4.3.4.2 Example of RM C  (StateCharts #1*)

The previous example can be extended by allowing the output-defining microsteps to

1. As per Harei et al. [333].
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occur at any point on the path 8 but subject to the restriction that the successor-deciding 

microsteps to refer only to outputs that are not in the u n d e f in e d  state.

°%tS co> ~ a undefined) (Ex-4.3.4.2-1)

Es((t) = O, (c0)
5, So...; 0

VOt e So...,

(Ex-4.3.4.2-2)

This semantics is essentially that of a network of Mealy machines with highly order- 

dependent coordination between the machines. As an example of this, consider the two 

deterministic microstep paths illustrated in Figure 4-7.

x  = present (x = present)

y:=0

q ;

y = present (y = present)

Figure 4-7. Concurrent Composition for Semantics of Example 4.3.4.2

There are three macrostep transitions possible from the concurrent composition starting at 

<Q[, Q2> - T h e  macrostep actually selected depends on the internal ordering of the 

microsteps. From <QV Q~,> there are:

< Q V Q2> -> < G ' i »  Q"2>  (Ex-4.3.4.2-3)

< Q l, Q 2> - ^ < Q \ , Q ,2>  (Ex-4.3.4.2-4)

< Q V Q2> < Q \ ,  Q'2>  (Ex-4.3.4.2-5)
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These macrosteps are derived according to the following chains, respectively:

This ordering dependence is due to the subtlety that an output which is not p r e s e n t  can 

be either a b s e n t  or u n d e fin e d . As a result, this semantics is highly nondeterministic 

under concurrent composition.

Responsiveness

By construction, it is possible to have an output-defining transition follow a successor- 

deciding transition. This means that it is possible to construct a situation where the input 

can be determined by examining the output. An example would be a microstep transition 

relation Ts which evolved from qx to q2 but defining as either c or d  depending on 

whether the input Ox was a or b respectively:

c d

In the transition relation this is expressed as:

and
(<t>) ( \£g (c5) = — c q = undefinedl

The semantics is R .
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Modularity

The modularity condition can be understood by examining two systems Ta and Tp 

which are defined at the microstep level so that T  outputs b on input a and TR outputs 

a on input b . This is illustrated in Figure 4-8 and given in transition relation form as fol

lows:

where:

X « , ( c a > n a )  =  ( CQa =  4 l  b) A{ nQa = <i\Ano r  b A =  a)

= _,( cop= undefined]

Similarly:
(<t>)Tp, (cp» = ^P8̂ CP» np) A ^P*( (cp)

where:

P̂afCP>V = { CQ r ^ A C 0 ^  a ) A('ISp=<?,2 A n Oa =  a A n O ^  b )

(<t>) f  ^
£ps (cp) = —i|̂  Cq = undefinedj

Consider the concurrent composition Ta || 7"p us defined in Eq 4-21 for the composite 

state Q = (£?,, Q2) . Taking F r  |( T { (Qp Q2) } as defined in Eq 3-40 as the fixed point 

of the microsteps. It can be seen by inspection from E ^ \ c  ) and E^^C n) that for T
*1 I 1 “ *!

to be applicable, the output Op must be defined and for r p to be applicable, the output 

Oa must be defined. It is not possible to take a forward step from (Q ^Q ^) without 

assuming the definition of either output Oa or 0 p . So, Eq 4-22 holds and Eq 4-23 but in 

conjunction they do not imply Eq 4-24. The semantics is M.

Causality

By inspection, it can be seen that no basic microstep transition Xs makes reference to

196

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Figure 4-8. Systems Ta and Tp Showing the M  of Example 4.3.4.2 
an output until it is not u n d e fin e d .  This naturally defines a path-dependent ordering

relation < * (/, o) between the inputs and outputs of any machine; a state-dependent§
ordering relation %  (/, o) is derivable from < „ (/, o) in a straightforward way by consid-

Vi 5

ering each start state Q of the paths 5 and deriving a relation among the (/, o) which 

is consistent with them all:

% O', o) = f [  o)

The semantics is C.

4.3.43  Example of R M C  (StateCharts #2l)

As before, the previous example can be modified by adding path-spanning consistency 

conditions. The previous semantics can be extended by requiring that, in addition to the 

enabling conditions given in Eq 4.3.4.2-2, that all microsteps on a path 5 be enabled by 

the output status sk and value vk defined for output Ok at the end of the path. The consis

tency conditions are as follows:

°Z (co) = a  ->( cQ̂  = undefinedj (Ex-4.3.4.3-1)
5° " ‘ VOk 6  8 0 ...1  ‘

°% (co) = n l  cot 2  vk) A ( cot 2  h )  (Ex-4.3.4.3-2)
VOt e S

1. As per Pnueli and Shalev [602].
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E ™  = 0 % (cQ) a 0 * (c 0) (Ex-4.3.4.3-3)
1 00 ...i O

This semantics is like the Mealy network of the previous section only there is a consis-
▲

tency constraint on each output Ok across all the microsteps of a path 5 . The consistency 

constraints have the effect of allowing only the transition of Ex 4.3.4.2-4 by the consistent 

path given in Ex 4.3.4.2-7.

The path-spanning consistency constraint makes for a deterministic semantics, but still 

at the expense of M. In aggregate, this semantics has exactly the same properties, RMC , 

as the semantics of Section 4.3.4.2. The extra conditions of Ex 4.3.4.3-2 merely reduce the 

amount of intra-macrostep nondeterminism. In particular the proofs of the previous sec

tion can be carried through directly with Ex 4.3.4.3-3 substituted instead of Ex 4.3.4.2-2.
f<tnfor the definition of Es (c5) .

Responsiveness

The semantics is R, as per Example 4.3.4.2.

Modularity

The semantics is M, as per Example 4.3.4.2.

Causality

The semantics is C, as per Example 4.3.4.2.

43.4.4 Example of R M C  (The Synchronous Languages1)

Again modifying the previous example, a new semantics can be defined removing the

1. Halbwachs [320] and the series of articles in the special issue edited by Benveniste and Berry [62] (the 
articles [101] [195] [321] [465] [469]) are good overviews.
The Synchronous Languages are: Esterel [75] [2951. Lustre [ 153] [321] [320], Signal [464] [65] [465] and 
Argos [501] [502] [503].
Also, see the presentation of Section 5.7.
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local causality conditions of Ex 4.3.4.3-1 but keeping the path-spanning consistency con

ditions of Ex 4.3.4.3-2. The consistency conditions are thus as follows:

This semantics keeps the deterministic aspect of Example 4.3.4.3 but does not require that 

transitions possible at 5. be enabled by the outputs made available up to that point Tran

sitions at 8f. are be enabled by outputs defined in any microstep 5■■ for / e 0...n  on the 

full path 5 = 80 n .

Responsiveness

As in the previous examples, because an output-defining microstep can appear after a 

successor-deciding microstep, the semantics is R . The formal of this would be exactly as 

in Example 4.3.4.2.

Modularity

The proof of the modularity property follows from the example used to show that 

Example 4.3.4.2 is M. In this example, the construction shows that the current semantics 

is M . As before, consider two systems Ta and 7^ which are defined at the microstep 

level so that Ta  ̂ outputs b on input a and 7^  outputs a on input b as follows:

(Ex-4.3.4.4-1)
e 8

(Ex-4.3.4.4-2)

where:

present)c0 = a a  c0 = present

Similarly:
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where:

cQf = ?2 A coa = a) A^ Gfl = ^ 2 Anoa = aA/Io,,

, = a a  c0 = present j  a  ^  cQ̂  = b a  cQ̂  = present

, )a (

Again, consider the concurrent composition Ta || . Here it is possible to take a for

ward step from (Q v Q2) without assuming the definition of either output Oa or Op (the 

assumption of both occurs within the microstep sequence). As a consequence, Eq 4-22 

holds, Eq 4-23 holds and in conjunction they imply Eq 4-24. The semantics is M .

Causality

This very same example can be used to demonstrate the causality property. In Ta the 

state-dependent partial order from Q , is

The principle of causality requires that the state-dependent partial order for the concurrent

the composite, as in the example constructed for RMC-13, the inputs and outputs are 

defined as:

^ q S ° V °  a )  =  { ( “ ’ * ) }

In r p the state-dependent partial order from Q,  is 

^ qS ° * 0  p) =

composition (/, O) be consistent with both <Q { 0 ^  Oa) and <Q̂ ( Oa, <9p). For

/ =  ( )

O =  ( O a , O p )
and as with that example,

*Gpcq,(A0) = {(0,<6,a>)}
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Yet, by construction 0 p < Oa and Oa < Op but Oa * 0 p . The semantics is C.

43.4.5 Example of R M C  (Codesign Finite State Machines*)

The previous examples have approached the semantics definition problem from the 

viewpoint that a microsemantics is a decomposition of a macrosemantics. It is possible to 

adopt the opposite viewpoint, namely that a macrosemantics is a summarization of a 

microsemantics. The example of this section demonstrates that the RMC Barrier applies 

equally to such constructions.

Here the fundamental level of discourse are microsteps: the microstep transition rela

tion Tg is the primary entity with the macrostep transition relation T being derived from 

it. The behaviors allowed in the (micro)semantics then are the set of possible chains of 

transitions in Ts . Call any chain of transitions in Tg a trace, specifically a prefix-closed 

trace having the property that Vr e  T 3 s & T 3 s’ e  I *.t = ss . Within such a trace, con

sider two sorts of transitions t6 e  Ts as before: successor-deciding transitions and out

put-defining transitions. The successor-deciding transitions do not define outputs while 

the output-defining transitions define a value for an output.

In order to break up a trace of microsteps into a series of macrosteps, a means for iden

tifying the end of a macrostep must be defined. Call a set of successor-deciding 

microsteps a cause and call a set of output-defining microsteps a reaction with causes 

being labeled Cf and reactions being labeled . Without loss of generality, assume that 

for all macrosteps i  that JC(.| > 0 and |R-| > 0 . This makes it meaningful to speak of the 

range of C. or R{ as the pair (5mjn, &max) which are the minimum and maximum micro- 

time points in the set. A macrosemantics is a projection of a microstep path 5 down onto 

a macrostep path cr of causes-reaction pairs a f = (C., Rf) subject to the following gen

l . As per Chiodo et al. [ 167]. Also see the presentation of Section 5.4.
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era! conditions:*

1. All cause sets Ct and C. are disjoint; C; n C j  = 0 .

2. Any two cause sets Ci and C- may overlap in microtime; as is illustrated in Figure 4-9.

3. Reaction sets Rt and Rj, i  * j  may not overlap in microtime; thus they must be dis
joint.

4. Without loss of generality, in any macrostep ct(. = (Cy, R{), all the causes c e C. must 
all occur before any of the reactions r e  R{; the C(- and R{ may not overlap.

Subject to these rules the semantics of a composition Tx II 7^  is defined again in terms of 

microstep traces. The traces admitted by the composition is the set of traces in the set of
9

shufflings of traces of T{ and T2 that are consistent with the interconnections between
5 5

T. and T2 . This is an existential condition on composition, that there exists a projection& S

of the microstep trace 8 „ that is a macrostep trace a  .. which is consistent
V 72* 's11 ^

with consistency and ordering rules. For the semantics to be M then such a projection 

must always exist.

Figure 4-9. A Semantics of Microsteps defining Macrosteps

1. What is significant in this formulation is that a macrostep transition need not be a fixed point on the raw 
microstep trace 6 directly. It is not possible to characterize a macrostep trace ct as a chain of fixed points in 
Ts since the ranges of cause sets C(- can overlap.
2. Trace shufflings are used in the trace-based semantics of NES, c.f. Section 2.3.1.
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The view adopted in this semantics is still that of a reactive system. Causes still gener

ate reactions and the behavior of the system is defined as the set of possible causes and 

reactions. There are new degrees of freedoms in this semantics that were not present in the 

previous examples. The most notable degree of freedom is the ability to overlap the 

ranges of one ore more causes. This expressiveness can be understood as the ability of the 

system to observe multiple triggering conditions before reacting to either. The second 

degree of freedom is the ability to skew various causation conditions and reactions across 

time. This is freedom allows for pipelining effects to be described in the semantics.

Responsiveness

In all macrosteps crf. , the cause C( must precede the reaction Ri . The semantics is R by 

construction.

Modularity

The modularity property of the semantics can be understood by examining two systems 

much like the ones used in Example 4.3.4.2. The two systems in the form of their 

microstep traces are as shown in Figure 4-9.

C,

R,

Trace,a Tracer
a, I 8a,2 JP.l

Figure 4-10. Two Microstep Traces for Composition in Example 4.3.4.5

In the case of this example modularity must be shown by the composition of traces 

rather than the conjunction of microstep transitions relations. To show modularity, the 

existence of a valid macrostep trace for the composition must be exhibited.
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Consistent with Example 4.3A.2, take of 5a t , 5a 2, 8p L, and 8p 2 to be as follows:

5<x, i = Q\
(Ex-4.3.4.5-1)

P̂. I = @2 ~b^2
(Ex-4.3.4.5-2)

^p, 2 = ^2 ^  @2

According to the structure of Figure 4-9 the (unit-length) macrostep traces cra and 

are given by the causes Ct and C2, and reactions R { and Rn as follows:

aa = (Cp /?j) = (  { O ^ a } ,  {Oa ^ b } >j  (Ex-4.3.4.5-3)

Op = (C2, R2) = (  ( Oa = b ) , {Op = a })  (Ex4.3.4.54)
a  a

Since the macrostep traces aa and a p are only one macrostep long, the state-dependent 

causal partial orders for Ta and Tp can be observed directly:

*q, (° fl’ °a ) = ( ( « . ^ ) } (Ex-4.3.4.5-5)

%  (0 a> °p) = ( &  ") \ (Ex4.3.4.5-6)

In terms of the microsteps these partial orders can be rewritten as:

ss, °«> = I <6a. 1. S«. 2>} <0x43.4.5-7)

= U 8 p. , , 5 p2) |  (Ex-4.3.4.5-8)

In the composition Tag || 7 ^  it must also be the case that the output-defining microsteps 

must precede corresponding successor-deciding microsteps (input accepting microsteps). 

This causality requirement is given in terms of an ordering on microsteps as:

( ( 5a.2.5M > . < 5p,2.5«. l>!  =  - Q r t S 1’ 0 ^  (EX4.3.4.5-9)
  ^
The unit-length macrostep trace of the composition a r  |( T consists of a cause  ̂̂
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and a reaction R which has the property that every output-defining microstep 
T*s11 Th

r e R  occur after every successor-deciding microstep c e  C . This requires
r“s11 Th \ 11 \

that, in addition to Ex 4.3.4.5-7 and Ex 4.3.4.5-8 that the following be true:

{ i» ^p, 2)» (^p, t> ^a, 2) } s  (Ex-4.3.4.5-10)

Examining Ex 4.3.4.5-9 and Ex 4.3.4.5-10 shows that any valid macrostep trace c
S 11 h

must be the projection down from a microstep trace 8 that has the following inter-
V 1 h

nal orderings:

8« . i s 8I12a 5I>.2s 8« . i (E*4.3.4.5-U)

V i s 5«.2a 5. . 2 s ®m  (Ex-4.3.4.5-12)

Yet, by definition 8a t * 8p 2 and Sp { * 8a 2 • Thus there exists no valid microstep trace
4 a  —
5 „ .As such there exists no valid macrostep trace a  .. . The semantics is M .

V  h  S l l \

Causality
4 4

The behavior of compositions is the interleaving of their microstep traces 8 r  and 8T
°5 l h

subject to the usual causal ordering of each. The composition Ta || TQ is by definition5 r 5
4 A

subject to the condition that 8 .. has a consistent projection c  .. where cause
7 “8 11 »S S i *5

sets Ci precede reaction sets /?,-. The semantics is C by construction.

4.3.4.6 Example of R M C  (StateCharts #3^, Discrete Event Semantics^)

The final example semantics is a three-level semantics. Here, the three levels of time are 

called macrotime, microtime and nanotimc. The three levels of time are depicted in Figure 

4-11. The intuitive idea of the semantics is that a reaction at the microtime level is com

posed of a series of nanosteps and a reaction at the macrotime level is composed of a

1. As per i-Logix Inc. [383].
2. See Section 6.2.
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series of microsteps. The output asserted by the macrostep is the union of the outputs pro

duced in all the microsteps Sf :

Hi 1̂1̂ 2^3 ^ 1̂ 2*1|*1 1̂ 2^3 | ^ 1̂ 2^3 *ll^2^3 *11^2 ̂ 3 *̂ 4 *15 n n_ n " n

T q 5 i 52 53 T l 5 1 52 S3

Figure 4-11. The Three-Level Model of Time for Example 4.3.4.6

(Ex-4.3.4.6-1)

Transitions at the nanotime level are structured so that all output-defining transitions 

occur after all successor-deciding transitions which means that outputs defined during a 

microstep do not become available until the next microstep. This case is the same as the 

one in Example 4.3.4.1 except that in this case, the R property holds over microsteps. 

Outputs events produced in a microstep 8 ,. become visible only during 8 - , and are 

thereafter unseen for j  > i + 1. The output values of course are persistent in the future 8 j . 

This property is called /?s because R holds over 8 -steps.

What makes the R8 semantics interesting is that the interfaces between the two levels 

are almost characterized by the fixed point of approximator functionals in the style of Eq

3-40 and Eq 3-41, yet those equations do not apply. The strong difference is that in this 

case, outputs which become defined in microstep 8 . are visible only the next microstep, 

8y + j . This prevents the characterization of microtime as a fixed point over nanosteps. 

The second strong difference is that output (events) become available for a microstep and 

then disappear thereafter. The ability of an output to be both p r e s e n t  and a b se n t  

within a macrostep implies that F8{Q) and B8{Q} are not monotonic with respect to the 

output information status as has been the case in previous examples.
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That F5{(2} and BS{Q} are computable functions can be established by empirical 

observation. Therefore, by Scott’s theory, the image computations must be monotonic and 

continuous over some information measure in Q . This information measure however is 

thought to be too horrendously complex to be usefully characterized. 1 Because Fh{Q\ 

and B8{Q} are not monotonic with respect to outputs Ok, they are not guaranteed to have 

a least fixed point relative to the outputs Ok. On counterpoint, F^{Q} and B^{Q} are 

trivially monotonic in the output information status because output definition actually 

occurs but once and at the start of the successive 5-steps. Output definition occurs after 

the r| -step fixed point of the previous 8 -step has been reached. Their fixed point is trivi

ally reached after all steps triggered at the start of the 8 -step have been taken.

Responsiveness

It is possible to have an output-defining nanostep following a successor-deciding 

nanostep, albeit across separate microsteps. Although output-defining nanosteps are 

required to precede successor-deciding nanosteps within a single microstep, if two adja

cent microsteps S(. and 8 / + , are considered, it is clear that the output-defining nanosteps 

of S/+ , occur after the successor-deciding nanosteps of microstep 8 {. . The semantics 

is R.

Modularity

The semantics allows outputs to appear and disappear across the microtimc steps. 

Whether an output from one component is sensed by another component is completely

1. One of the advantages of the process algebraic notation is that such non-monotonic transition systems 
can be expressed in a convenient and compact notation. The advantage of the p-calculus is that it provides 
an expressive notation which is also effective computationally. The p-calculus however requires formal 
monotonicity of functionals to ensure that the greatest and least fixed points exist.
The first attempt at formalizing the semantics of StateCharts [3331 demonstrated the non-monotonicity of 
the StateChart’s macrostep transition relation. This failure led to further refinements of the semantics [602] 
and ultimately to the definition of the Argos [501] variant of StateCharts and the RMC Barrier Theorem 
[378].
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dependent upon the microstep in which the output is sensed. Further, dependent upon this 

ordering, it is possible for the multiple p r e s e n c e  and a b s e n c e  status of an output 

across microsteps to enable behavior in a sibling. The semantics is M .

Causality

The semantics is C by inspection. In particular, it is possible to have unbounded 

sequences of microsteps 8 f .

4.4 Beyond the RMC Barrier

A number of strategies have been developed to approach the RMC Barrier. Interestingly 

it is possible to move beyond the RMC Barrier, though at some cost of expressiveness 

elsewhere in the semantics. There are a number of avenues available, each involving some 

sort of trade-off. Among these avenues, it should be noted that the RMC Barrier applies to

• a semantics as a class of systems, but not to individual systems within the class,
• a single semantics considered as a unit, but not to multiple separated semantics,

• a semantics in full, but not to semantics restricted by structural or reachability analysis.

By conscious design and by accidental evolution these aspects have been exploited to 

approach and even move beyond the RMC Barrier. Five strategies can be distinguished:

1. The Two-of-Three Choice
A choice among RMC , RMC  and RMC is made and justified.

2. Separated Semantics
The whole semantics is given in two parts, one for component-building and one for 
aggregation: a different two-of-three choice is made for each part.

3. Structural Restriction to RMC
A structural restriction is made on the system-building primitives so that RMC always 
holds. While the semantics is internally contradictory by the RMC Barrier Theorem, no 
contradiction can arise from the kinds of structural compositions admitted.
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4. Semantic Restriction to RMC
A semantic restriction is made so that RMC  always holds. Again, the semantics has 
RMC and is internally contradictory by the theorem, but a reachability analysis is 
invoked to disallow contradictory system descriptions.

5. Vacated Semantics
Here the model has RMC but the semantics simply ignores any contradictory interpre
tations. The semantics “vacates” the problematic denotations. They just don’t count.

The following sections describe each of these five approaches in greater depth explaining 

the purpose and effect of each approach. This analysis and the survey of semantic models 

from Chapter 2 form the basis of the survey and classification of applied semantics given 

in Chapter 5.

4.4.1 The Two-of-Three Choice

The RMC Barrier states that of the three properties R , M  and C, only two can appear 

in any semantics; adding the third causes a contradiction. The two-of-three strategy is 

merely the admission that a choice must be made: two primary properties are named and 

the third is disallowed. In a strong sense the two-of-three choice forces the language 

designer’s philosophy on the programmer/designer. In the best of cases, this choice is 

motivated by some technique that becomes possible if the restriction is adopted. In less 

fortunate circumstances, the choice is one of convenience. Examples of the Two-of-Three 

Choice can be found for all three possible two-out-of-three choices:

• For RMC the CSML language [123] can be cited. It was designed with an eye towards 
compositional verification algorithms based on reduction.

• For RMC the modified semantics of Pnueli and Shalev [602] for the StateCharts for
malism [330] can be cited. It was designed with an eye towards establishing a deter
ministic and causal semantics for the StateCharts semantics and improved on earlier 
definitions which did not have these properties [333].

• For RMC the branching time temporal logic CTL [184] [249] can be cited. It was 
designed with an eye towards expressing future existential possibilities. *
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The One-of-Three Choice 

That two out of three of R, M  and C can be chosen naturally leads to the question of 

whether it is meaningful to choose but one of the three.

• For RMC the original semantics of StateCharts [330] can be cited. It was designed 
with an eye towards ensuring that any syntactically legal chart had a semantic interpre
tation.

• For RMC and RMC there does not seem to be any obvious examples. While such 
could be artificially constructed, the point here is to cite existing schemes.

The Zero-of-Three Choice

The remaining choice combination is Zero-of-Three, a semantics that is RM C . It can 

be observed that all of the properties R , M  and C relate to how inputs and outputs are 

treated in the semantics. A semantics that admits neither inputs or outputs can be under

stood as being RMC. Clearly such a semantics is not R as an input-output pair that dif

fer cannot be exhibited; it is not M  because the evolution of a concurrent combination is 

not based on the outputs of the siblings; it is not C because no partial order <(i, o) exists. 

A pure Kripke structure which consists of K = (Q ,T, L) is an RMC semantics.

Another example of an RMC semantics can be seen in the so-called asynchronous 

shared memory model of concurrent computation. In that model a system is composed of 

some number of concurrent processes and a shared global memory. Each process evolves 

according to its own state graph with interprocess communication being accomplished 

exclusively through the global shared memory. The model of concurrency is fundamen

tally one of interleaving where at any time point, only one process makes a forward step. 

The total behavior of the system is the arbitrary interleaving of all the process’ actions. 

Practical instances of RMC semantics include Pnueli’s Temporal Logic languages [599] 

[601], Chandy and Misra’s UNITY language [159] or more recently Dill et a l's  Murtp

1. Recall that a noncausal system is one that anticipates its own future. A semantics that gives meaning to 
statements such as EXp (there exists a next state where p holds) is clearly one which anticipates the future. 
A non-causal system is not computationally effective in the real world where time only moves forward.
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language [2391. 1

4.4.2 Separated Semantics

If a choice had to be made, Huizing and Gerth’s proposal for moving beyond the RMC 

Barrier was to split the semantics for system description into two levels. Intuitively there 

would be a “high level” used to aggregate components and a “low level” used to build the 

individual components. A different two-of-three choice is used on the different levels. 

Their specific proposal was to use RMC for the low-level bodies and to aggregate these 

component bodies using an RMC  semantics. They give the semantics of a m odule  

operator that hides internal communications and ensures that the semantics is M . The hid

ing operator has the effect of allowing outputs to occur spontaneously with respect to the 

module’s inputs. This has the effect of giving the upper-level semantics the C property.

4.4.3 Static Restriction to RMC

The two previous strategics involved accepting the RMC Barrier and living within its 

constraints. However, the RMC Barrier applies to semantics, whole classes of systems, 

but is silent on the issue of individual systems. This leaves open the opportunity to admit 

individual instances of a possibly in inconsistent semantics. Thus, RMC can be guaran

teed to hold on any admissible system. The simplest way to ensure that RMC  holds on a 

system is to use a system aggregation scheme that is guaranteed to preserve two of the 

three properties. That the third property holds is guaranteed by some sort of structural 

restriction on the constructions that are allowed.

The most common instance of this strategy starts with an underlying semantics where 

concurrent composition preserves R and M  but does not necessarily preserve C. The

l. This is not to say that RMC semantics are not used to model reactive systems [3321, rather that the focus 
is on the atomic and interleaved aspects o f concurrency.
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structural restriction ensures that C always holds. For C to hold, there must be a partial 

order <(/, o) which respects modularity and a simple way to ensure that such a partial 

order holds is to allow only system descriptions where such an ordering can be con

structed from the communication graph of the system’s components.

The communication graph is an abstraction of the communication among concurrent 

components. It is a directed graph where the vertices P. are the autonomous unit of execu-
1 J

tion and there is an edge from P{ to Pj if the output of P( is an input to P .. For the class 

of finite-state hardware and embedded software systems the communication graph is con

sidered to be a static abstraction of the structure of the system description. The restriction 

placed on the communication graph is that it must be acyclic. Having an acyclic commu

nication graph ensures that <(/, o) exists for it can be constructed from the structure of 

the system, independent of the semantics. Examples where this approach have been 

taken are the languages SMV [518], Lustre [153] or S/R [424] [454]. In these cases the 

legal system descriptions are those where there is a topological order on, respectively, the 

variable definitions or processes.

4.4.4 Semantic Restriction to RMC

The natural extension of static analyses to guarantee RMC are semantic analyses to 

guarantee the property. As with the examples of the previous section, the typical case is to 

start with a description scheme which is RMC. The admitted system descriptions are a 

subset of these where RMC holds. Whereas in the previous case, the structural aspects of 

the description were used to verify C, in dynamic analysis the check is based on the feasi

ble behaviors of the system. As such dynamic analysis for C is intrinsically related to

1. The clumsy term "autonomous unit of computation” is used here as a generalization of the various terms 
used in various languages: process, module, machine, thread, function.
2. Communication graphs have been defined in a number of places. One recent exposition can be found in 
Aziz, Tasiran and Brayton’s heuristics for OBDD variable ordering [431.

212

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

reachability analysis. Checking that the C property holds is generally referred to as cau

sality checking. Examples of languages where semantics-based causality checking is used 

are the Synchronous languages which are reviewed in Section 5.7.

Concretely, a dynamic analysis must ensure that the state-dependent partial order for a 

concurrent combination, o), is consistently defined for all possible reachable

states (q v q2) ^ Q { ^ Q 2 of the system. In the worst case there are O (JQ̂ j |Q0|) checks 

which must be performed. Each check ensures that <q xqp ,  o) is consistent with both 

<9l(r, o) and o). A deeper presentation of static causality checking is deferred until 

Chapter 7.

4.4.5 Vacated Semantics

The final strategy for attaining RMC on a system description is called here the vacated 

semantics.* In that approach the inconsistencies inherent in an RMC semantics are not in 

the set of behaviors admitted by the semantics. So while the structure of the system 

description could be interpreted to exhibit a contradiction, the semantics ignores them: the 

contradictions just don’t count An example of a vacated semantics can be seen in the 

Combinational/Sequential model [364| [358] and the BLIF-MV [107] representation of 

logic networks for formal verification algorithms [37].

In BLIF-MV, all primitive semantics is given by means of transition relations which are 

called tables. The BLIF-MV tables arc generalizations of truth tables in the sense that they 

can declare nondeterministic outputs for a gate. Combinational logic is described by

1. This name is derived from the legal term that describes a court of law adopting a new doctrine, thereby 
repudiating the old: a court is said to “vacate” a previous ruling. That is exactly the sense here.
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means of composing tables through shared variables which model interconnecting wires. 

The transition relations for the basic AND, OR and NOT gates are shown in Figure 4-12.

The semantics of a network of gates is determined from a composition of the tables for 

the individual gates according to the formula:

t a ii b (x' y) = ta (xa> yA) A tb (xb> y B) (b lif-m v -i>

This expresses how A \\B  evolves in one step. In particular with the output of A con

nected to the input of B, existential quantification is used to declare that the output of A 

has the same value as the input of B :

TBoA (x, y) = 3z. (Ta (x, z) a  Tb ( z , y) ) (BLIF-MV-2)

This leads to the interesting paradox of the circuit shown in Figure 4-13.* By inspection 

it can be seen that the circuit implements y = x  for all possible the values of x . That is, 

the circuit has the behavior that x  = 0=> ysO  and x = 1 => y = 1. This behavior can be 

observed by focusing on the AND gate labeled D. Clearly x  = 0 => y = 0. The paradox is 

that the BLIF-MV composition semantics only admits the behavior where x  = I . The 

behavior when x = 0 is simply ignored.

This circuit is distinguished by having an internal combinational feedback path. The 

feedback is of a special kind in the sense that the local structure of the circuit is contradic

tory however the global function of the circuit never allows this inconsistency to be 

observed. Malik has formalized this notion of local structural inconsistency versus global 

functional consistency to define the dynamic causality checking problem in the general 

case [494] [495]. In practice, such examples might arise from a synthesis or translation 

procedure which constructs circuit descriptions that contain feedback loops [242] [76]

1. This particular example was provided by Tom Shiple in the context of dynamic causality checking. The 
observations about the circuit under Combinational/Sequential semantics are due to Sharad Malik. This 
effect was independently observed by Burch et al. [ 142).
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Gate Function Table

—

AND

> Z =  X  A y ^AND ~

x  y  z 
0  0  0 

0  1 0 

1 0  G 

I 1 1

OR

=) > Z =  x v y T o r  =

x y  z 
0 0  0  

0 1 1 

1 0  1 
I 1 1

—

NOT

z =  —oc T n o t  =

x  z  
0  1 

! 0

Figure 4-12. BLIF-MV Tables for the Common Gates

[78]. A more detailed presentation of dynamic causality checking is given in Chapter 7. 

The relevance here is that the vacated semantics of the Combinational/Sequential model 

does not admit an inconsistency. There is no causality checking problem because the 

semantics simply ignores the behavior: only the locally-consistent behavior of 

jc = 1 => v = 1 is admitted.

Having a mathematical formalism that ignores unpleasantries has precedent in the fair

ness constraints of co-automata. In that body of theory,* an automaton over an infinite 

sequence is given by the usual means: states and a transition relation. Additionally a set of

1. Some of the theory of co-automata was related in Chapter 3. Other overviews are Kurshan [4541 and Tho
mas [684].
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Ta =

w

X  V u x  w  y

0  0  0 U V V w 0  0  0

0  1 1

II 0  1

II 0  1

II 0  t  0

1 0  I .1 0 1 0 1 0  0

I  I 1 1 1 1

T  =  3 u ,  v , tv . ( T a ( x , v ,  u )  / \ T b ( u ,  v )  a  r c ( v ,  w )  a  T d ( x ,  w ,  y ) )  =
x  y  

1 1

Figure 4-13. A Non-Causai Circuit Under a Vacated Semantics 

fairness constraints are provided which declare that certain behaviors of the automaton are 

to be ignored (conversely accepted). The co -automata can be seen as an instance of 

vacated semantics where problematic infinite behaviors are ignored (conversely 

accepted). The vacated semantics approach is extremely convenient from a theoretical 

perspective as there is no need for clumsy Two-of-three choices, separated semantics or 

post hoc restrictions on admissible descriptions.

Where the vacated semantics approach is problematic is at the border between verifica

tion and synthesis. The scenario is the top-down verification methodology proposed by 

Kurshan [454]. There an abstract design is progressively refined and verified until finally 

at the most concrete level implementation is produced (the final synthesis step). The 

methodology implies that properties are proved on a system description under a vacated 

semantics and then an implementation is synthesized based on the “verified” description. 

The problem is that a given design property proved on the abstract model need not hold on 

the actual implementation. Consider the property AG-> (y = 0) in the example of Figure

216

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

4-13. The property succeeds because the circuit is a model for the property under Combi

national/Sequential semantics yet an implementation of the circuit produces y = 0 when 

x = 0 .

4.5 Review

The limits on semantic models have been explored in this chapter. Three orthogonal 

aspects of a semantic model were defined. These were responsiveness which is ability to 

define output values that are specific to an input value, modularity which is the exclusive 

reliance on output values as the concurrent coordination vehicle and causality which is the 

existence of a consistent order on microstep execution that is preserved in concurrent 

compositions. These three attributes were shown, in sum, to be incompatible by the RMC 

Barrier Theorem: no semantics can be defined which has these three properties and is not 

self contradictory.

Within the limitation of the RMC Barrier Theorem, the some of the many microseman- 

tic variations were explored. The microsemantics for the communicating Moore 

machines, the “Codesign” Finite State Machines, several versions of the StateCharts and 

the Synchronous Languages were presented. Finally, the possibilities for surpassing the 

RMC Barrier were explored. These possibilities ranged across accepting the limitation 

directly, constructing a separated semantics with different choices for small and large 

scale composition, selecting only systems that have RMC and simply ignoring the contra

dictions.

The RMC Barrier and microsemantic decomposition of the transition relation forms a 

fiamework for analysis and classification of semantic models. Any finite state semantic 

model can be classified according to its microsemantic construction, its position with 

respect to the RMC Barrier and its method for surpassing it. The next two chapters survey 

other more applied instances of semantic models and programming languages in this light
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^  Applied Semantics

The previous two chapters dealt with semantic models at a fundamental level and the 

limits on the structure that can exist in a finite state semantic model. In Chapter 4 two pos

sible approaches were investigated: the use of a microsemantics and selective attainment 

of RMC. Another method for tailoring a semantic model for a specific use is to dress it up 

with some extra syntax or other structure. This chapter reviews some of the many sugar- 

ings that have been proposed for the standard models.

Raw semantic models are extremely abstract and often don’t relate directly to an appli

cation area. Historically, extra notation and conventions have been added in order to 

induce enough flavor and structure into the underlying semantic model that its use in 

relates more directly to a real-world application. The flavor aspect implies that in many 

cases models are domain-oriented if not outright domain-specific. Intended application 

areas range from recurrence equations in digital signal processing to inter-component 

coordination in a control-dominated embedded system settings. The extra structure arises 

from the need to make the model more directly usable in verification or synthesis. One of 

the most common examples is the definition of a composition operation which allows a 

system to be defined in terms of many components of manageable size.

The following sections present semantics in a more applied context using the RMC Bar

rier Theorem to analyze the features and fundamental expressiveness of the semantics.
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The sections are ordered along the lines increasing complexity and internal structure. The 

first instance, the Asynchronous Shared Memory model offers the fewest semantic fea

tures for coordination. The examples increase in complexity and expressiveness to the 

case of the Communicating Sequential Processes and the Clarke Languages where the 

decision problems are undecidable. Backing away from undecidability one step gives the 

Synchronous Languages. The argument presented here is that the RMC semantics of the 

Synchronous Languages when constrained to C offers the best compromise of expres

siveness while retaining the decidability of finite state semantics.

5.1 Asynchronous Shared Memory (ASM)

Probably the simplest model of concurrent computation is the Asynchronous Shared 

Memory (ASM) model [498] [500], In that model, computation occurs amongst a number 

of processes, each having their own local state space. Inter-process coordination occurs 

through a global shared memory that can be read and written by all processes. This is 

depicted in Figure 5-1. The model of concurrency is a nondeterministic interleaving of the 

computations of each of the processes.

Figure 5-1. The Communication Model of Asynchronous Shared Memory 

The transition relation of an operation opi in a single process is of the form:
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7\(op) (c, nf.) which expresses that the operation is enabled on the whole system state c 

but it affects only a subset of the next state n[. Additionally, there is the stability constraint 

which requires that the states not changed in opt remain the same in the next step. The 

transition relation for the system as a whole is given in the following form:

T.(c,/|) = r . (op) (c,rzf) A  [“[ (Cj = rij) (Eq 5-1)
j e

T(c,n) = £  T i (c>«) (Eq 5-2)
I

In particular, the structure of t \°p) in Eq 5-1 is phrased in terms of a “control”-transition 

component X-pc) and a “data”-transition X^data) component as follows:

x >pc) (v .'  V .) = ( V . s [-(a)) A ( V . » L(P)) 5'3)

T ? " ” (C, n.) = X ,™  [  V . '  V .) A «,) (Eq 5-4)

This form makes it clear that the transition Ti of Eq 5-1 is enabled just when the program 

counter of the process Pk has the value specified in the relation X-pc), namely L(a). 

What is convenient about this representation is that this enabling condition is independent 

within each term Ti in the summation of Eq 5-2. * The Tt are independent in the sense that 

adding more processes Pk, or adding more transitions within the existing process set 

merely adds more disjuncts to Eq 5-2.

Transition independence is an important property because in case F  {Q} and B {Q } are 

monotonic and continuous then the explicit construction of T (c, n) can be avoided. This 

can result in a tremendous increase in efficiency in verification because the construction 

of a monolithic form of T(c, n) is one of the major bottlenecks in verification schemes. 

The exact statement of the conditions when T  can remain disaggregated and their ramifi

cations on microsemantics are deferred until Chapter 7 where the properties of F {Q } and

l. The enabling conditions are not necessarily disjoint because the transition relation T  may be nondeter-
ministic. having more than one T{ enabled at a given step.
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B{Q}  are studied in detail.* The relevance however in this chapter, is the observation 

that there are other semantic models where the components r .  are not independent and 

where an aggregated form of T  (c, n) must exist for the F  {Q} and B {Q\ computations.

The ASM model was originally developed to model concurrency as one might find in a 

multitasking operating system and as such its major artifacts, multiple independent pro

cesses and a shared memory, reflect that background. In the context of the RMC Barrier 

from Chapter 4, the ASM model is a zero-of-three choice: it is RMC. This is because 

there are no outputs or inputs to processes (R ) and the concurrent behavior of the system 

in a step is governed by the transitions enabled by the state of the global memory and the 

running process (M  and C).

5.2 Selection/Resolution (S/R)

One step away from a single global memory where any process can read and write any 

memory cell is a system with a structured use of the global memory. In Kurshan and Goni- 

path’s Selection/Resolution (S/R) model [8] [449] [424] each process is endowed with a 

local state space as before. The distinction comes in the restriction that each process can 

only write to the part of the global memory that is assigned to it. A process is allowed read 

from any cell of the global memory. Structurally the system is as shown in Figure 5-2.^

Operationally the system computes according to the following recipe: in each cycle 

every process defines its outputs and then every process modifies its internal state based 

on the global memory. The output definition step is called selection and the per-process 

computations are called resolution. This simple structure leads to a two-phase structure of 

time where every process selects and then every process resolves. In terms of a microstep

1. Succinctly stated though this condition is that existential quantification distributes across disjunction:
3x/(x, y) v g (x, v) = (3x.f(x, y)) v (3x.g (x, y )).

2. Based on Figure 7.1. page 111 in Kurshan [4541.
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selections are a 
global public memory

process state are a 
local private memory

Figure 5-2. A Network of Selection/Resolution Processes 

behavior, all the output-defining microsteps occur before any of the successor-deciding 

microsteps. The two views of the structure of time are shown in Figure 5-3.

s r

L1 -f 1 I

s r s r

1 1 I 1 1 I I  i 1

8|5i5j8^i
i 1 1 1 

s86S78g89 SlS283S45556875859
1 1 1 I 1 1 IT 1
8l8283848586878S89

‘0 *i \
Figure 5-3. Two Views of Time under Selection/Resolution

In the pure form, the two-phase selection/resolution semantics allows for arbitrary reor

dering of the output-defining microsteps within the selection phase. In this case, no out

put is dependent upon any input from another process. The output relation Ot of each 

process is completely determined by the state of the processes exactly as in Eq 4-3. In this 

case, the transition relation of every process is of the form:
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Ti (cf, i, Op n.) = Xt (cp i, n£) a  Oi (c,., of) (Eq 5-5)

Thus, in the pure form the S/R semantic model is RMC and has a microsemantics as was 

given in Example 4.3.4.1.

Further extensions to S/R, the Mealy-complete networks [454j, allow for the output of 

a process to be determined by the inputs received from other processes. This gives a tran

sition relation following the form of Eq 4-2:

( c p  i, O p  n f  =  Xt ( c p  i, n;) a  Oi (Cp t, o;) (Eq 5-6)

The dependence of the output relation Oi on the input i clearly makes the semantics R . 

For this reason, some extra constraints on the system description must hold. The first is 

that the pure transition relation Xt of each process is subject to a condition of Mealy com

pleteness. This condition ensures that each process in the network always has some transi

tion enabled no matter what input it receives. This condition is also called lockup free and 

is a requirement that each process’ behavior be completely defined for all possible inputs.

The second condition is that the network communication graph must be acyclic. This 

ensures that there is always a state-independent causal order for the network <N which is 

consistent with the state-independent causal order of each process <p . The partial order
i

~N is the minimal set of constraints on the order in which the process selections must be 

defined. In this extended case the semantics of S/R is RMC  but the structural restriction 

on the communication graph ensures that only systems where RMC holds are admitted.

Under either the pure or the extended semantics, the macrostep behavior of the whole 

network is defined by considering the outputs of all the processes as the inputs to each: in 

either Eq 5-5 or Eq 5-6 take i = ( o j , ..., ot_ p oi+ on). Coupled with the output of,

from the interconnection (/, o() is just o = ( o , , on). The coordination among all the 

processes in the network is the set of steps that is consistent with the coordination of each 

process:
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T(c ,  n) = 3o. 7} (cf, 0, #if) (Eq 5-7)

53  Combinational/Sequential (C/S)

The Combinational/Sequential (C/S) model [107] [37] [358] was developed to model 

behavior in from a hardware perspective. Behavior is described in the form of a network 

of generalized gates and latches. Gates are generalized in the sense that they are multi-val

ued, have multiple outputs and may have nondeterministic input/output relations. Gates 

are referred to as tables because the behavior of a gate is specified by explicit enumeration 

of the elements in the transition relation in tabular form. Latches are generalized in the 

sense that they may have nondeterministic initial values.

The C/S model is the semantic basis for the BLIF-MV internal representation which 

was described in Section 4.4.5. In that presentation the macrostep behavior of a C/S net

work was given in equations BLIF-MV-L and BLIF-MV-2. Those equations are repeated 

here for concreteness with the two composition situations being depicted in Figure 5-4 

and Figure 5-5 respectively.

Figure 5-4. The Parallel Composition of Two C/S Networks

The parallel composition of several networks is defined by the conjunction of the transi

tion relations of each of the components:

Here, the transition relation of each subnetwork is written 7\ (c, n()  to denote that Ti may

Network

Network^

T{c,n) = r T r {.(c ,n (.) (Eq 5-8)
I
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depend on the output of any latch, the whole of c, but only defines a subset ni of the 

latches.

The transition relation Ti of a network is typically given in terms of multiple levels of 

logic where the transition relation for each gate can be reasonably defined by enumerating 

the rows of its transition relation in sum-of-products form. In this case, the transition rela

tion of the network T (c, n) is given in terms of a set of intermediate variables z .

C-, •"
c i ■---------- — “  > — *z ,*' ■ - --------- -

Network L  p  Network2 i—^

Figure 5-5. The Serial Composition of Two C/S Networks 

The transition relation of the serial composition of two networks is given by:

TBoA(c,n) = 3z.Ta(c,z) a  Tg (z,n) (Eq5-9)

With regard to the sense of independence which was used to in the previous section, the 

transition-relation behavior of C/S networks are not independent for either parallel or 

serial composition. The addition of a new subnetwork in either the parallel or the serial 

case means more conjuncts with interdependence amongst the conjuncts in Eq 5-9 being 

explicit in the shared intermediate variables z . The conjunctive form of both Eq 5-8 and 

Eq 5-9 require that an aggregated version of T (c, n) be used for the F { Q} and B {Q\ 

computations. As a result a number of heuristic techniques have been developed to man

age the conjunction and quantification computations [42] [43] [360] even to the extent of 

performing minimization on intermediate computations [655]. ̂

The C/S model addresses the RMC Barrier by way of being a vacated semantics. As 

was illustrated in Section 4.4.5 the contradictory denotations in the network simply disap

1. For example. Aziz, et al. [431 report that for moderately-sized examples produced from a Verilog com
piler [ 164] that there are roughly 1600 transition relations and 1500 intermediate variables in Eq 5-9.
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pear when interpreted under Eq 5-9.

5.4 “Codesign” Finite State Machine (CFSM)

The previous semantic models concentrated on defining behavior exclusively in terms 

of macrosteps. In contrast, semantic activity can be defined at the microstep level with the 

notion of a macrostep being a purely derived quantity. The “Codesign” Finite State 

Machine (CFSM) [167] is a semantic model that starts with a set of behaviors at the 

microstep level and derives macrosteps as causal projections of the microstep traces.

The CFSM microsemantics was presented in Example 4.3.4.5 so the presentation here 

is restricted to the presentational aspects of the model. A “Codesign” Finite State Machine 

is defined as:

C = (l ,E ,0 ,R ,F )

where:
/  is a set of typed input events. For i s  /  is given by i -  (n, V) where n is an 

event name and V is a finite set of values V = {v0, ..., vfc} and \ V\ = k.

E e l  is a set of trigger events where for e e  E the value set of the event is a 
singleton. | V\ = I ,

O is a set of typed output events in the same style as I subject to O n  E = 0 .  
R e  { (n, Vj) | (n, V) e (9, v. s  V] defines the reset states of the outputs.

F e  2l x 2° is the transition relation of the machine. *

Events arc considered to be time stamped and of the form e = (n ,v ,t)  indicating that an 

event n occurs with value v at time t . Time is isomorphic to the natural numbers which 

leads directly to the denotation of a CFSM as a set of traces.

A CFSM is described in the 5oftware///ardware /ntermediate Formal (SHIFT) format

1. The transition relation F is subject to other ancillary conditions such as the input containing at least one 
trigger event. These peculiarities are important for pedagogical reasons but can be ignored for the treatment 
here.
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[1681 which, much like the BLIF-MV intermediate format [107], uses transition relations 

to specify behavior. The difference in SHIFT is that explicit access to the information 

ordering is allowed. For any event in I k j O  it is possible to refer to the value aspect w, 

and to its information ordering aspect *w, which is called the trigger o fw .  Compilation 

from high-level languages into the CFSM formalism is accomplished by creating a SHIFT 

description of a network of CFSMs which, in aggregate, mimic the desired semantics of 

the high-level language.^

A network of CFSMs is defined in terms of the sharing of outputs and input event sets 

between two or more machines. Broadcast communication between machines is straight

forward: the output event set of one machine can be mentioned in the input event set of 

any number of machines. The denotation of a CFSM network is a trace structure that sat

isfies all of the traces of all its components. The CFSM semantic model addresses the 

RMC Barrier as a two-of-three choice, opting to select M  as was shown in Example 

4.3.4.5. Unfortunately, due to the M property, there is no guarantee that an extensible
9

trace structure exists for every network.

The CFSM model was designed for an application area of mixed hardware and software

1. One claim 11691 is that the semantic model of the CFSM network is complete for Synchronous la n 
guages such as Estcrcl. This class of languages [62], among which arc Estcrcl. Lustre. Signal, and Statc- 
Charts (specifically the Argos variant), have been shown to be RMC [3781. The CFSM model was shown in 
Example 4.3.4.5 to be RMC. Thus the CFSMs are not complete for the Synchronous Languages.
Tt is feasible to produce semantically faithful CFSM networks only for subsets of the Synchronous Lan
guages. Yee [733] has defined a CFSM network semantics for a subset of Esterel which is causal. The subset 
of Esterel is guaranteed to be C by structurally disallowing instantaneous dialog. In a strong sense, this sub
set is no longer Esterel. it is something else more akin to SML [98] or CSML [195].
2. Were CFSM trace structures defined by the <o -regular languages, then this statement could be as simple 
as stating that the resulting trace set is vacuous. The CFSM trace structures are prefix-closed which makes 
the statement a bit more complex because prefix-closed traces are_necessarily finite. The presence of a dead
lock. which is the dynamic manifestation of M (c .f  the proof of M in Example 4.3.4.5), does not render a 
trace vacuous, but it does make it shorter than one might expect. It makes a trace structure non-extensible.
Extensibility of a trace structure T is defined as Vr e  T 3s  e  T 3(  e £* .s = t< which means that if there is 
some behavior t in the trace set. there is another legal behavior s which progresses t by a few more steps. 
Deadlock prevents the extension of r to f .
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systems [169]. The perspective adopted is that the exact timing of events in either domain 

can vary widely between the two implementation domains and that the semantic model 

must take into account the nonzero delay that exists in physical systems reacting in the 

real world. Accordingly, Berry’s perfect synchrony h y p o th e s is that the system reacts 

faster than its environment, is discounted and the opposite view is assumed. The CFSM 

model assumes that reaction takes some time and uses this assumption to develop a theory 

where overlapping and interleaving of causes and the natural skew between causes and 

reactions is modeled directly. This was illustrated in Figure 4-9.

Hie CFSM Synthesis Theorem [168] gives a constructive method for deriving realistic 

implementations of CFSM networks in terms of a network of Mealy machines. The syn

thesis theorem states that for every CFSM trace over events ei there exists a FSM trace 

over pairs of sets of events structured into cause-reaction pairs (Cj, Rj). The converse 

holds as well. The theorem constructs a projection of microstep event traces in microtime 

onto a trace of cause-reaction pairs (Cy, Rj). This projection defines macrosteps in terms 

of a causal ordering of microsteps and forms the basis of a constructive synthesis proce

dure.2

1. The definition and implications of the pure synchrony hypothesis are variously presented in Berry and 
Cosserat’s early publication of Esterel [79]. Benveniste and Berry’s overview of the Synchronous Lan
guages [62], or Halbwachs [320]. This is also covered in Section 5.7.1 of this work.
2. The CFSM Synthesis Theorem also highlights a major confusion in the interpretation of the perfect syn
chrony hypothesis. Perfect synchrony refers to time relative to events rather than to an absolutist notion of 
metric time. That a reaction takes “no time” means in context that no events o f  that kind occur again in the 
cause assessment for the reaction. That distinct cause sets may be interleaved or that causes and reactions 
are skewed across microtime is illusory. Halbwachs [320], Chapter 7 reviews this as does Section 5.7.1.1 of 
this work.
Despite the interleaving and pipelining allowed in the CFSM trace semantics, exactly such a restriction to a 
single reaction per cause is placed upon microstep event traces as well. This is fundamental to the CFSM 
Synthesis Theorem statement that for every microstep event trace there exists a macrostep trace. As such, 
the totally-ordered notion of time at the microstep event level corresponds at the macrostep level to the 
state-dependent partial order <q(i, o) of the RMC Barrier Theorem. The CFSM Synthesis Theorem implies 
that CFSM macrostep traces are consistent with Berry’s pure synchrony hypothesis.
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5.5 Communicating Sequential Processes (CSP)

A second trace-based model is Hoare’s Communicating Sequential Processes (CSP) 

[353] [354]. CSP was designed as a means for describing any computation, not merely 

those falling into the reactive system paradigm. As a result, the formalism is extremely 

general providing primitives for sequentiality, concurrency, deterministic choice, termina

tion, failure, symbol change, concealment and nondetcrminism. With all these features, 

CSP programs are complete with respect to the computable functions and can model any 

coordination scheme. In the general case CSP programs are not restricted to finite or even 

bounded state so an analysis according to the RMC Barrier as in the previous sections is 

not directly applicable.

Undecidability and non-finitcness are problematic in application domains such as plant 

control or behavioral modeling so the interest in CSP for these areas has focused on sub

sets which have bounded or finite state and where the analyses of interest are dccidable. In 

these cases, which are detailed in the sequel, one can readily identify the RMC properties 

based on exactly the same trace-theoretic arguments which were used for the CFSM 

model in Example 4.3.4.5.

The CSP subsets arc also interesting because they exactly identify the next set of 

semantic features that might be added to a semantics to circumvent the RMC Barrier. The 

CSP subsets provide a framework where these extensions can be incrementally and inde

pendently added to the automata-theoretic basis that has been used to this point Theoreti

cal results exist to show that these extensions in sum, make the decision problems 

undecidable or imply a semantic model with unbounded state.

5.5.1 Theoretical Communicating Sequential Processes (TCSP)

The theoretical aspect of CSP are often referred to as TCSP to distinguish the process 

algebraic aspects of the language. Within the process algebra, the exclusive focus of the
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language is the use of communication as a means of synchronization. All inter-process 

synchronization and communication is accomplished through message passing over chan

nels which are an unbuffered single-cast communication medium. The two important 

operations in this regard are the sending of a message expression £  by a process P, and 

the reception of a message by a process P into a local variable V. The first operation is 

called send and is written PIE while the second is called message receive is written P1V.

The significant semantic feature of the message traffic over a channel is that the mes

sage send/receive operation is synchronous between the sender and the receiver. If PIE is 

invoked and the receiver is not also executing Q1V then the sender blocks. The converse 

condition is true as well with the receiver executing Q1V and awaiting the reception of a 

message written by P\E. Synchronization of this sort is often presented in concrete pro

gramming languages as a rendezvous as in Ada [24] or a remote procedure call.

In the full presentation of CSP [355] a simple simulator was presented in tandem with 

the CSP language elements in order to demonstrate the realizability of the language. This 

gave an operational meaning to structures in the language but did not directly define the 

behavior of a CSP program. The simulator also did not provide any direct means to formu

late analyses of CSP programs. The trace-theoretic model [118] [119] appeared later and 

forms the basis for such analyses over prefix-closed traces. In that model the behavior of a 

program is interpreted relative to a set of successful traces S and a set of failure traces F. 

These two sets define the executions of the program that end in termination and deadlock 

respectively. That trace theory was presented in Section 2.2.1.

5.5.2 Finitely Recursive Processes (FRP)

One interesting subset of CSP is the Finitely Recursive Processes (FRP) of Inan and 

Varaiya [388]. Their application area is plant control where the distinction between send

ing a message and receiving a message is somewhat blurred. A physical plant executing
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PIE isn’t going to wait until the plant observer/controller gets around to executing Q1V. 

Their variant of CSP reflects this by defining communication in terms of shared events 

rather than in terms of the simultaneous execution of send and receive. In this view, if two 

or more processes perform the same event a  at the same time point then a synchronization 

and communication between them is said to occur. It is unspecified which process is 

understood to perform the send and which performed the receive.

Of interest here is their proposal to define verification problems on FRP systems in 

terms of containment of trace sets t r :

tr{SY SFRP} Qt r { TAS K}  c l *

The verification problem that SYSFRP obeys TASK is defined in terms of the contain

ment of the language defined by the trace set of SYSFRP by the language defined by the 

trace set of TASK. This is verification posed in terms of language containment.

They note that when the FRP systems can be shown to have finite state, then the lan

guages of the trace sets are guaranteed to be ^-regular and the containment problem is 

decidable.  ̂The remaining obstacles blocking the practical implementation of this idea 

were the lack of a means for specifying the design property TASK, the practical means 

for manipulating large trace sets and the identification of constraints that guarantee that 

the language of a given FRP system is ^-regular.

An FRP scheme is a system of n -dimensional recursion equations in the variables X

I. A table listing the decision properties for the various classes of languages can be found in Hopcroft & 
Ullman [368], page 281.
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and Y where:1

X = (X v X2, . . . ,X n)

Y = (Kt, Y2, ..., Yn) 

and the system is specified as:

Y = g 0W
X = f ( X)  

where gQ is made up of:

1. The constant processes STOP and SKIP ,

2. The projection process n i (X) = X .,

3. The local change operator f~~ 8 ,
The global change operator / tt “ 8 + 1 ,

4. Synchronous composition / ,  (X) ll/2 (X) ,

5. Sequential composition f x (X ) ; / ,  (X) .

and f  is of the form:
f {X)  = i f ^ J ^ X ) , . . . , ^ )
f i (X)  = (ct(. ( ->fj j (X), a i 2 -* f i '2 (X),  -*-•> a 4 k -J*fl: k (X ))

The system (f, g0) can be thought of as defining a state machine where f  is the next-state 

function and g is the output function. Unfortunately such systems do not necessarily have 

finite state due to the presence of sequential composition (rule 5). The languages defined 

by FRP systems are shown to be equivalent the Petri net languages^ so a practical algo

rithm for language containment is not readily apparent.

Despite the excess power of the FRP formalism. Inan and Varaiya argue that sequential

1. Inan and Varaiya [388] adopt some liberties with the TCSP notation. In particular they allow the event set 
of a process to change dynamically (role 3) and use this feature to model termination. This allows the 
sequential composition operator to be defined without reference to any special termination event 4  and 
removes certain ambiguities in the definition of mutual recursion under sequential and synchronous compo
sition. They also write processes in the form of vector recurrence equations instead of using Hoare’s fixed 
point operator over processes Y = pK.F(K). Their notation is used here directly.
2. A review of Petri nets as a semantic model was given in Section 2.23. A language-theoretic characteriza
tion of Petri nets is given in Peterson [584],
A short summary of the Petri net languages are larger than the ^-regular languages but incomparable to con
text-free languages. Some context-free languages cannot be generated by any Petri net and some Petri net 
languages cannot be recognized by any pushdown finite automaton.
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composition operator is important They note that although FRP systems are as expressive 

as Petri nets which are strictly more powerful than Finite State Machine (FSM) systems, 

neither formalism supports sequential composition. A definition of sequential composi

tion is possible in the FSM paradigm so long as termination is a state-specific property, 

termination being modeled as an anointed “final” state. Termination in the FSM formal

ism however cannot be extended to be a path-specific property encompassing historical 

information. In the Petri net formalism where this is possible, is not obvious how to 

express the termination of a net.

At a deeper level, their argument defends the recursion equation formulation of the CSP 

process algebra as a fundamental contribution. Their view is that the data-centric focus of 

the FRP has a number of advantages over the state-centric view of processes as the states 

of an FSM. The data-centric aspect of the FRP describes behavior in terms of a task model 

where action is the primary aspect and state is a derived quantity. This can be seen in the 

very definition of the FRP system (/, gQ) in which the state is encoded in an n -dimen

sional vector of variables while the system description rests primarily in the process func

tions /  and g0. This allows the data-centric FRP descriptions to be much more compact 

than their state-centric counterparts. Also of interest is their observation that FRP recur

rence equations are independent in the sense defined in Section 5.1. This independence 

makes it extremely easy to modify the behavior of a system by simply adding a new equa

tion. Finally, the use of mutual recursion in the definition of f  defines a natural notion of 

hierarchy in terms of modules. A module of equations is a set of mutually recursive equa

tions. A set of equations {X v X2, ..., are said to be mutually recursive when X  can

not be written as X = f u Z  where K n Z  = 0  and each of Y and Z are mutually 

recursive. This notion of modularity allows for independent implementation and schedul

ing of modules. These arguments are recapitulated in the justifications for synchronous 

dataflow languages which are reviewed in Section 5.7. The relevance here is that FRP can
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be viewed as an independent approach to a synchronous dataflow language, starting from 

a basis in the CSP process algebra.

5.5.3 Reduced Communicating Sequential Processes (RCSP)

Following the FRP, Cieslak and Varaiya [175] gave a more restricted version of CSP 

which developed stronger connections between the FSMs, production systems and Petri 

nets. In the Reduced CSP (RCSP), a system (/, gQ) is again given as an n -dimensional 

vector of recurrence equations: *

T = g 0(X)

X = /(X ) 

where gQ is made up of:

1. The constant processes STOP ,

2. The constant process SKIP ,

3. The projection process ni (X) = X .,

4. Synchronous composition / ,  (X) ||/2 (X)

5. Sequential composition f x (X ) ; / 2 (X)

and f  is of the form:
/(X ) = ( /1(X ),/2 (X ) ,.. . ,/rt(X))
/.(IQ  = (a  .......

Within these rules, the system RCSPk is defined as the full RCSP system but without the

rule k. The key observation is that an RCSP5 system is equivalent to an FSM while an

RCSPa system is equivalent to a simple grammar or production system. The full RCSP

system is shown to retain the expressiveness of the Petri net languages as was the case

with the FRP.

1. Cieslak and Varaiya [ 175] continue with the use of a recurrence equation notation used in the FRP pre
sentation [388], though they retain a more traditional definition of termination and sequential composition 
based on an explicit “exit” event J . Again, their notation is used here directly.
2. The nomenclature RCSPk is idiosyncratic to this presentation but follows used in the presentation of the 
Clarke Languages (Lk) [178]. These languages are presented in Section 5.7. The dcnotational theory of the 
Synchronous Languages (SLk ) [64] [65] uses this style of notation but in a different way. The latter theory is 
presented in Section 5.7.2.
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Using this framework, Cieslak and Varaiya give proofs which show that RCSP is unde- 

cidable for the standard verification problems: deadlock, termination, potential execut- 

ability, liveness, boundedness and language equality. Of these decision problems, all but 

reachability are decidable for RCSP4 while for RCSP5 all the problems are decidable. 

The important contribution of the RCSP semantic model is its structure in terms of separa

ble rules in which the subsets RCSP4 and RCSPs readily correspond to other known 

semantic models. In the context of the development here, the RCSP formalism identifies 

which semantic features provide the next level of expressiveness beyond the finite state 

semantic models discussed so far. Conversely, the structure of RCSP shows how a fully 

general model of computation such as TCSP can be progressively restricted and structured 

to the point where its decision problems are solvable.

5.6 The Clarke Languages

A second limitation on applied semantics was provided by Clarke in defining the char

acterization problem [179] for a large class of programming languages, which have since 

become known as the Clarke Languages [178]. The characterization problem establishes 

the impossibility of defining a relatively sound and complete Hoare Logic1 for the Clarke 

Languages. Further, for lack of a relatively sound and complete Hoare Logic, the halting 

problem for these languages is undecidable, even when the variables in the programs are 

restricted to finite domains.2 This result is significant because it established an explicit list 

of five programming language features which, when appearing in combination, cause 

undecidability. Any one of these features when removed restores decidability. It is espe-

1. c.f. Section 2.1.1.
2. The proof that the Clarke Languages are undecidable for |0 | £ 2 revolves around being able to program 
any computable function with a Clarke Language. By Church’s Thesis a Turing Machine can compute any 
computable function. Pascal code to simulate a Turing Machine is given in Cousot [2131, pages 924-929. 
This construction is nontrivial because a dynamically allocated data structure is not used to represent the 
unbounded tape; naw/dlspose is not used.
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dally powerful because it applies even in case the variable domains in the program are 

finite but non-trivial (|D| >2) .

The context of the characterization problem is the definition of an axiomatic semantics 

for pointerless subsets of imperative programming languages such as Algol [556] [557] or 

Pascal [723]. A Clarke Language^ L is an imperative programming language, under some 

mild restrictions, which includes procedures and which has the following five features:

i. procedures as parameters of procedure calls (without self-application),

ii. recursion,

iii. static scoping,

iv. use of global variables in procedure bodies,

v. nested internal procedures as parameters of procedure calls.

The Clarke Language L is undecidable. At finer level of classification, the Clarke Lan

guage Lj is defined by disallowing feature j .  These languages are decidable.

The detailed restrictions on the language arc indeed quite mild. Heap storage allocation 

is disallowed but the allocation of fixed-size activation records on an unbounded stack is 

allowed. The procedures must take only a finite number of parameters and they must con

tain only a finite number of local variables. All variables must be defined over finite 

domains and there must be no sharing of variables via aliasing. The proscription against 

aliasing clearly disallows pointers. It also precludes procedure call-by-referencc but not 

copy-in/copy-out. It however may or may not disallow the renaming declarations such as 

the renam es of Ada or the a l i a s  of VHDL, depending on whether the particular decla

ration instance can be formulated as a syntactic rewrite.

Of interest at the finer level is the language Ln , the Clarke Language without recursion. 

The fact that halting is undecidable even for the recursionless subclass is extremely pro

1. Following the presentations in Clarke [180] andCousot [216]. Other presentations [186] have used Lx to 
denote “while” programs with L2 through L6 denoting what is here referred to as L through Lv .
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found. In contrast, the halting problem is decidable for finite-state “while” programs 

[410]. Theoretically at least, one has but to enumerate the reachable states of the program 

while searching for either a halting state or a repeated state. Another surprising conse

quent of this result is that any Garke Language allowing recursion, say choose L or LiU, 

is undecidable. In contrast, language acceptance by a pushdown automaton (PDA) is 

decidable [4111.* Thus it is not possible to establish decidability of these languages 

through a naive analogy between a stack machine executing a recursive Clarke Language 

and acceptance of a string by a PDA. These distinctions center around two aspects of the 

Hoare Logic of Clarke Languages: the complexity of the predicates in the preconditions, 

statement and postcondition and the treatment of names in those predicates.

A Hoare Logic for a language defines the semantics of the language through a set of 

precondition-statement-postcondition structures {/>} S{0} where P and Q are predi

cates over a finite set of state variables. In Section 2.1.1 this form was shown to be equiv

alent to a relational form (y(., yi+ ,) e  Opfl S H where the y- are predicates over the some 

finite set of state variables. The predicates y . are the characteristic functions of the pro

gram states before and after the statement S is executed. Implicit in the formulation of 

Op([ S B is a frame assumption [162], that the states variables not mentioned explicitly as 

changing across the transition yf to y/+ , must remain the same. In a sound and complete 

Hoare Logic, the variables in the predicates yf and yf + ( are all used in one-to-one corre

spondence with the value-containing objects of the program. All such objects have distinct 

program variable names so the correspondence is direct and importantly, any object which 

cannot be explicitly referenced through a named program variable cannot change during 

the execution of a statement 5.

In contrast, for the Clarice Languages, there is not a one-to-one correspondence between

1. c .f the table of decidability results in Hopcroft & Ullman [3681, page 281.
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program variable names and state variable names in the predicates y -. There exist anony

mous value-containing objects in these programs which can be modified in a statement S . 

As such the precondition-to-postcondition transition relation cannot be expressed in terms 

of a predicate pairs over the finite set of state variables. For example at an arbitrary state

ment Sk, objects buried on the stack cannot be accessed through any named program vari

able. These objects are anonymous from the particular vantage point of Sk so they are out 

of reach of statements in the logic. They cannot be characterized in terms of a predicate y. 

over the finite set of state variables. In case Sk is a procedure call, then thanks to static 

scoping rules, these objects can be modified. Yet Op{[ S U can only express how named 

objects change with a frame assumption declaring that anonymous remain unchanged. 

This is a contradiction which means that there is no way to characterize programs with 

complex control structures and variable reference conventions in terms transition which 

are defined in a syntax-directed fashion relative to statements S.

In summary, the characterization problem for the Clarke Languages centers around the 

complexity of control structure and program variable reference conventions. Hoare Logic 

expresses semantics from a local vantage point with respect to statements S. The Clarke 

Languages give the programming language constructs which make the control structure 

and variable reference conventions too complex for the local perspective to accurately 

characterize the global state transitions of the system. Specifically, Clarke’s contribution 

was in showing that the complexity of the language L is too great to allow for automated 

analysis by any means.

5.7 The Synchronous Languages

The semantics described in the previous sections have increased in complexity and 

expressiveness to the point where the last two semantics offered were undecidable. The 

Synchronous Languages in contrast offer the same sorts of description styles and syntax
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as the previous examples while retaining the decidability benefit of having finite and sim

ple control structures. The Synchronous Languages are a class of widely diverse lan

guages that all share a common set of semantic properties. Their diversity ranges across 

state-centric languages with imperative control flow such as Esterel [79] [295] or a State- 

Chart-style graphical notation such as Argos [501] [502] to data-centric languages given 

in the form of recurrence equations such as Lustre [68] [153] or Signal [464] [280]. At a 

most fundamental semantic level, all these languages have an RMC semantics. They 

bypass the RMC Barrier by admitting only system descriptions where RMC applies, 

though the actual form of the restriction, static or dynamic, is idiosyncratic to the lan

guage.

With a presentation of the microsemantics having been given in Example 4.3.4.4 and 

the approach to the RMC Barrier being clear, this section is devoted to characterizing the 

range of Synchronous Languages and the semantic commonality among them. The work

ing definition used here is that a Synchronous Language has an RMC semantics and that 

the RMC Barrier is addressed with a per-system restriction to RMC. At a deep level, a 

formalization of the common semantic aspects remains an open problem though intuitive 

and semiformal arguments can be readily related. The informal attributes of the criteria 

for being a Synchronous Language is related in Section 5.7.1. Tutorial publications have 

drawn on intuitive notions of synchronous semantics to provide high-level context for the 

application domains and language design goals. Unfortunately this informal characteriza

tion has led to the inclusion of languages that are beyond the bounds of the class yet which 

informally seem to have the appropriate properties. *

Halbwachs obliquely addresses this in his overview presentation,-  pointing out that the

1. Specifically the introduction [62] and the ensuing article [ 1951. There, SML and CSML are characterized 
as being part of the Synchronous Language class. While their semantics is defined in terms of macrosteps, 
the fine structure is such that outputs only become defined in the succeeding cycle. They are RMC.
2. Halbwachs [320], page xi.
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synchronous point of view has been adopted almost exclusively in languages developed 

by researchers cooperating between four French research institutes1 with other formalisms 

using these ideas only partially or a posteriori. With this in mind, it would be convenient 

if there were some consistent set of fundamental properties that were common among the 

group. Benvenistc and Le Guemic have attempted such a characterization with their 

Denotational Theory of Synchronous Communicating Systems. An overview of their the

ory is the subject of Section 5.7.2. In Section 5.7.3 the various Synchronous Languages 

are placed within this theory.

5.7.1 Defining Attributes

Though very disparate in their presentations the Synchronous Languages all share a 

common philosophical outlook relating to the model of time, macrosemantics, concur

rency and determinism. Any particular Synchronous Language is designed within this 

framework taking into account the other design goals such as imperative control flow or 

functional style. The next sections review the philosophy common to all the Synchronous 

Languages.

5.7.1.1 Perfect Synchrony

Probably the most striking feature of these languages is their model of time. Within the 

synchronous paradigm the model of time is intrinsically tied to the semantics of the lan

guage by modeling time in the form of events. Thus in a particular parlance, time could 

be referred to in units of seconds, meters, ticks or resets. There is a strong distinction 

between metric time as measured on a timepiece by an external observer and event time as 

measured by events from within the semantics. In the synchronous paradigm the qualifier

1. These are Ecote NationaJe Superieure des Mines des Paris (ENSMP), Institut National de Recherche en 
tnformatique et Automatique (INRIA), Institut de Recherche en Informatique et Systemes Aldatores 
(IRISA), Institut d’lnfonnatique et de Mathdmatiques Appiiquees de Grenoble (IMAG).
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event is usually dropped when referring to time. This convention is adopted here as well 

where confusion cannot occur.

The direct effect of this association is the requirement that the system (programmed in 

the Synchronous Language) compute its responses enough faster than its environment that 

the abstraction is a reasonable one. * This has been called the perfect synchrony hypothesis 

by Berry [79]. It is a requirement that event recovery and reaction computation take no 

(event) time. The system must have completed one computation before the environment 

sends it another. This amounts to a timing analysis obligation of the same sort that VLSI 

design engineers must perform on synchronous circuit designs: it must be the case that the 

combinational logic computing each macrostep be faster than the system clock. When 

the perfect synchrony hypothesis holds then the behavior of an implementation is guaran

teed to match the behavior predicted by the mathematics of the semantics. Synchronous 

languages have the property that the realization of every macrostep relation, in either 

instructions or gates, is simple in the sense that its critical paths can be easily identified 

and estimated. In the hardware case this implies that macrosteps be combinational and in 

the software case that the instruction stream be loop-free.

5.7.1.2 Multiform Time

Time also has a secondary aspect which is unique to the synchronous model. Time is 

measured exclusively in the form of events so the view of time is consistently a local one 

where each process measures time in its own context. The act of composition, either con

l. In many introductory presentations, c.f. Benveniste and Berry [62] or Halbwachs [320], this requirement 
is phrased in terms of the system being infinitely faster than its environment.
Letting the system response frequency be f sys and the environment event generation frequency as f env. 
then requirement that lim^— = oo is clearly too strong.

'  f f t V
All that is required is that m all cases the system is marginally faster than its environment The actual 
requirement is that the system is always finished reacting before the next event occurs. An example of the 
confusion between the allegorical sense of infinitely faster and the practical need for marginally faster  in the 
interpretation of the perfect synchrony hypothesis was illustrated in Section 5.4.
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current or sequential, necessarily brings the local timelines together. The result is a new 

timeline that is globally consistent with the timelines of both components. At this new 

level, the composition has a set of inputs and outputs and timeline of the composition is 

again local relative to these inputs.

The significant aspect of the Synchronous Languages is that there are many notions of 

time, each having its own progression. These timelines are related by structures in the lan

guage and by compositions of structures in the language. The RMC Barrier Theorem 

states that not all compositions are non-contradictory. As such every Synchronous Lan

guage compiler must perform computations which relate all the local timelines and 

ensures that there is a consistent global timeline. This takes the form of checking for cau

sality, the lack of internal nondeterminism or that the timelines are infinite.

5.7.1J Projective Semantics

The granularity implied by the multiform notion of time illustrates a third aspect of the 

Synchronous Languages: that the macrostep semantics is defined in terms of microsteps. 

External observation of the system is defined only at macrostep instants and the intra- 

macrostep behavior is not directly observable. This allows one to make claims about a 

system’s behavior as having an instantaneous response where inputs cause reactions and 

their outputs occur in zero time. Here the notion of event time is used in the declaration 

that inputs and outputs are simultaneous. They are simultaneous in event time but need 

not be simultaneous in metric time.

Gonthier has called the abstraction step which hides microsteps inside a macrostep a 

quotient operation. * The references in this presentation is to a projective semantics. This is 

the projection n  from the development of Chapter 3. Either the quotient or projection

1. c.f. Gonthier [2951, Chapter 3.
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analogy is appropriate because the sense is that Oner structure of microstep ordering is 

abstracted away. The power of this abstraction comes from the fact that it is only the pro

jected system which is actually constructed or is ever observed. The microstep system is 

but a mathematical construct whose shadow is seen in the actual implementation. This 

observation is important for it is used to justify the non-contradictory definition of the pro

jection.

5.7.1.4 Concurrency

Synchronous languages are fundamentally concurrent. At the very least there is concur

rency between the system and its environment in the form of the instant-to-instant mac

rosteps. More commonly there is intra-system concurrency where the total system 

behavior is defined in terms of a number of logical tasks, each of which is operating con

currently in synchrony. In a control-centric view the tasks take the form of processes 

which coordinate with each other by means of events and reactions just as they would 

with the environment. In the data-centric view, the tasks take the form of mutually depen

dent recurrence equations.

5.7.1.5 Determinism

The final defining aspect of the Synchronous Language semantics is that they are com

pletely deterministic. Concurrency in Synchronous Language semantics is deterministic, 

and is a semantic feature which is fundamental in its own right. This sort of deterministic 

concurrency is distinct from the concurrency in the ASM model for example. There, con

currency is a derived feature being interpreted as the nondeterministic interleaving of dif

ferent threads of control. Determinism in Synchronous Language semantics is important 

because it guarantees that for the same input stream the system gives the same output 

stream. This is a critical aspect because it means that implementations are predictable. It is 

also important in the context of verification because it allows selection nondeterminism1
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to be interpreted in a declarative way as a form of modular abstraction. This is in contrast 

with ordering nondeterminism which is not modular by definition. Selection nondetermin- 

ism declares that there are multiple sensitizable paths away from a state though the order 

of 5-steps along each of those paths, once commenced, is completely determined. Order

ing nondeterminism on the other hand corresponds directly to the modelling of concur

rency with nondeterministic interleaving as per the ASM model.

In this sense, selection nondeterminism is declarative because it is not an effective 

(directly executable) operation in the semantics. It is meaningful in the sense of declaring 

multiple behaviors in compact form. For example, a property that states that “P’s occur 

after 5 Q’s” can be abstracted to one in which “P’s eventually occur after some Q’s.” This 

results in a reduction from a deterministic ten-state system to a nondeterministic two-state 

system. This example is illustrated in Figure 5-6. A distinction arises between the two 

sorts of nondeterminism only in the case of non-abstract semantics where each step is bro

ken down into multiple microsteps.

The key point in Synchronous Language semantics is that nondeterminism is an orthog

onal semantic feature. It has a specific interpretation and is invoked at the explicit discre

tion of the programmer

5.7.1.6 Focus

The preceding sections presented the high-level philosophy of the Synchronous Lan

guage semantics. Within these broad constraints Synchronous Languages have been 

defined which present imperative control flow, graphical StateChart-style and recurrence 

equation dataflow styles of description. Too, as the examples in the previous section have 

illustrated, there are a number of proposed formalisms which are synchronous-like in the

l. Gajski et at. [2771. page 83.
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Figure 5-6. Selection Nondeterminism Supports for Modular Abstraction

sense that they fit the adjectival descriptions but which for one reason or another are not 

fully within the class of Synchronous Languages. It was also pointed out that the breadth 

of Synchronous Languages somewhat contributes to this confusion by making it difficult 

to identify what is common among the Synchronous Language semantics and how they 

differ from other formalisms. A unifying definition is needed.

5.7.2 The SL Languages

Earlier in this section a working definition of Synchronous Language semantics based 

on the RMC Barrier was proposed. In contrast, Benveniste and Lc Guemic have attempted 

a characterization of Synchronous Language semantics in the Denotational Theory of 

Synchronous Communicating Systems [64] [65]. That theory is based on a clock calculus, 

called the G-calculus, and a suite of six instructions which are used to define the mini-lan

guages SLk . These languages are shown to be increasingly expressive (5L. ( ).

More importantly though SL2, SL3 and are shown to be associated with the seman

tics of Lustre, Esterel and Signal respectively.
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This theory is interesting because offers a characterization of synchronous semantics 

based on Kahn’s very general causal process model [414] [415] rather than on a theory of 

fixed points of finite transition relations. As well as being effective for Synchronous Lan

guages such as Signal where clocks are explicit artifacts, the theory provides a powerful 

explanation for the differing attributes of the actual languages. In particular the necessity 

of trans-microstep consistency in a macrostep is explained while at the same time preserv

ing the non-observability of intra-microstep behavior. For completeness, this section 

reviews the denotational theory omitting much of the notational machinery and explicit 

proofs in the interest of succinctness.

5.7.2.1 Synchronous Systems

A synchronous system is defined by tuples of values indexed by a discrete time index

The domain over which the x ( 0  and v 0 1  are defined is left unspecified in this summary pre

sentation. Its structure is not material to the presentation here. It need only be finite. The 

inputs to a system up to time t is defined in terms of a sequences of these tuples as

An externally observable behavior is defined as a map associating input sequences to their 

corresponding output sequences.

This model of behavior is an extremely general one for all it requires is that input initial 

segments X x f imply output initial segments Y{ r  Such maps O are referred to as causal 

processes because their defining property is that the output initial segments do not antici

pate the inputs. This is the very definition of causality.

(Eq 5-10)

(Eq 5-11)

(Eq 5-12)
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5.7.22 Six Primitive Instructions

The SL Languages are defined in terms of a suite of six primitive instructions derived in 

large measure from the Signal language. In combination they generate different subclasses 

of causal processes <t>. The primitive instructions are defined in Figure 5-7.

Rule Name Instruction Semantics

0 flow D , (1) (2) (n k  
P ( x  , X , — , X )

w  J  (1) (2) V r e t o . P f x ,  , x f , . . . , x f J

i register y  = u  —> Sx y x = u  Vt>  l .y ,  =  x f _ j

ii condition y  =  x  when b V r e  o ).y f =  x f (x f s  present) a  b t

iii oversample y  = mux c V r e  ©, c  e  K , 0  <  /  <  c.  y t + <-

iv merge
y  = u  default v

f u t (U'  = present) 
V f e  m .y ,  =  |  ^  e b e

V concurrency P\ \Q Operation of P and Q on consistent clocks

Figure 5-7. The Primitive Instructions of the SL Languages

The rule (o) defines a flow in terms of an instantaneous relation P over the streams x (i).

The meaning of (o) is the direct extension of the instantaneous P over the time index t . It

could be phrased less generally as y = / ( x (1), x (2), . . . ,x (n)) which makes plain its

combinational properties. The relational aspect is relevant when synchronization is speci-
(I) (’’) (k)fled. In particular the relational notation synchro  {x , x , . . .,x } is used to spec-

( I )  (2) ( k )ify that x ,x  , . ..,x share the same clock. The primitive instructions shown in

Figure 5-7 are self explanatory save for (iii) which is the subject of the next section.

Using these six primitives, the languages SLk are defined in terms of combinations of 

the instructions according to the rules of Figure 5-8. What is plain from the table is that 

SLq c  SLx c  c  SL3 because each successive class of mini-language allows more

instructions than the previous. The relationship that SL3 c  SL4 is shown in a proof that
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the features of the mux instruction are subsumed by those of the d e f a u l t  instruction. 

How this embedding is carried out is explained in Section 5.7.2.6.

Language Rule

0 i ii iii iv V

SL0 / - - - - 4
SL{ 4 4 - - - 4
s l 2 / 4 4 - - 4
s l 3 / 4 4 4 - 4
s l a 4 4 4 - 4 4

Figure 5-8. The SL Languages

5.7.23 Oversampling as a Multi-Dimensional Time 

The jbux instruction, rule (iii), produces in y a clock that has c occurrences for every 

single occurrence of c . The mux instruction defines the oversampling of the clock of c 

according to the value of c . Operationally, the mux instruction can be thought of as defin

ing a counter whose initial value is the value on c when c appears and which decrements 

at each successive microstep. The succeeding macrostep is reached when the counter 

reaches zero. The mux is the primitive responsible for the definition of microsteps as 

found in the control flow of Estercl. *

Without oversampling, the model of time defined by Eq 5-12 is one-dimensional, dis

crete and is isomorphic to the natural numbers N‘. The significance of the rule (iii) is that
k

it induces a ragged multi-dimensional structure in K x [~[ K;. onto time as shown in Fig-
i = 1

ure 5-9. The embedding is multi-dimensional instead of two-dimensional because every 

instance of multiplexing creates a two-dimensional temporal structure K x Kg, each of 

which are incomparable save for their first dimension. The oversampling rate is taken

l. Actually this claim is left as a conjecture, c.f Benveniste and Le Guemic [64] in both Section 4.2.4 and 
Chapter 5. The reasons for this are dealt with in Section 5.12.6  of this work.
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from the value of c which is by definition a finite set so there can be no infinite oversam-
k

plings. The macrostep timeline of Eq 5-12 corresponds to the elements in K x {0}r

Time

c/iQ.
BCO
2
s

Macrosteps

t 4 t 5 t 6

S,’6
8 .'7

5,'9
8 to

Figure 5-9. The Multi-Dimensional Structure of Time under Rule (iii)

5.7.2.4 The Q-Calculus of Clocks

Within this framework, the clock calculus of a process (an SLk program) is defined. A 

clock calculus is an abstraction of actual behavior that focuses exclusively on the synchro

nization aspects of the computation. The abstraction is simply that a boolean clock is 

t r u e ,  f a l s e  or a b s e n t  in an instant with the obvious information ordering of pres

ence being greater than absence. The clock calculus of a process can be thought of as the 

synchronization skeleton of that process.

The algebraic clock calculus is a completely formal system in which a set of manipula

tions and reductions are defined. These completely formal operations on expressions in 

the algebra can be interpreted as predictions about the potential behavior of the process in
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the same way that algebraic operations on differential equations can be said to predict the 

potential behavior of a circuit An algebraic clock calculus is defined only for the class of 

totally observed processes where two conditions hold:1

1. no clock or signal that contributes to the state of the process has been masked,

2. the basic clock dominates (is faster than) all other clocks in the process.

The basic clock is the clock that is always present at every macrotime step. It corresponds 

to t i c k  in Esterel. The first condition clearly relates to the expressibility of the process’ 

state in the algebra. The second condition is a requirement that time be linear. The further 

ramifications of these requirements are returned to in Section 5.7.2.6.

In this case the algebraic clock calculus is defined relative to the three-element field 

over the integers {-1,0,1} which is denoted by Z /3 Z . These integers are interpreted as 

absen t is 0, tru e  is 1 and f a l s e  is -1 . Presence is interpreted as either tru e  or 

fa lse .  Constraints are represented in this system by quadratic polynomials over Z /3Z .

2
• b = 1 requires that the signal b is present at every time step,

0 *>
• y” = x~ declares that both v and x  must both be present or both be absent at once and 

that x  and v have the same clock,

• y~ = x~ ( -  b -  b~) declares that y is present only when b is t r u e .

The algebraic clock calculus of a process with n signals is shown to be given by func

tions X -» Z /3Z” mapping time points t e X onto points in the slate space c e Z/32?1. 

In this regime a process’ behavior is a dynamical system given by:

P c Z /  3Z” xZ /3Z ” which is a transition relation,

I e  Z/3Z" which are the initial conditions

Equivalently P  can be viewed as a set of k  polynomial equations viewed as constraints:

1. In the original presentation [64], the condition of total observability is formally defined in terms of time- 
ordered sequences n of information flows a  (A) over variables A . The informal definitions are used here 
because the extra notational machinery is not of direct use in this presentation.

251

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

M W  r - l )  = 0

MW,-i) =°
The trajectories of the system in Z/3Z* are those which satisfy all of the Pf. With the 

system synchronization skeleton in this form there are computationally effective methods 

for causality checking [651 •

S.7.2.5 The Denotational Semantics of SL^

The denotational semantics for the languages SLk is given in terms of the Q-calculus. 

In the usual style of a denotational semantics, the denotations of processes as sequences is 

defined in a syntax-directed fashion. The denotation of the whole process expression is 

defined in terms of the composition of the denotations of its parts: the denotation of a pro

gram is given by a valuation function:

program  B =

EPROC [[program  {]
SYNCH ̂ program  fl 

VAL ^program  fl 
ALGCLOCK dprogram  fl 

where:

program is an SLX program,

EPROC (][program fl gives the denotational extension of program ,

SYNCH ̂ [program fl specifies the external clock relationships that must hold.

VAL dprogram fl specifies the external value relationships that must hold,

ALGCLOCK \[program]\ is an abstraction of program  that summarizes its 
synchronization properties.

The denotation of program  is completely determined by the first three components of 

Md program  fl. EPROC dprogram^ expresses the denotation of program in terms 

of sequences of mappings (Xt, Yt) defined over macrotime steps t by means of a syntax- 

directed decomposition. The terms SYNCH\[program\\ and VAL Uprogramfl respec

tively give the environmental dependencies of program . 1
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The fourth component, ALGCLOCK  0program]}, is the material representation of the 

algebraic clock calculus for program . It is the set of polynomials over Z/3Z* which 

are the constraints on program . This is actually the significant field for any effective 

means for deciding the well-definedness of a program e  SL4 must manipulate polyno

mials in Z /IZ ?  implied by ALGCLOCK [[program fl.

Conveniently, the semantic valuation function Af |[ program  ]J has the property that the 

algebraic clock constraints implied by a concurrent composition are just the union of the 

constraints implied by each of the components:

ALGCLOCK IP  || QB = ALGCLOCK |[PI ALGCLOCK  IQfl 

This union rule implies that the algebraic clock calculus of a system is defined whenever 

the algebraic clock calculus of all its leaf instructions is defined. This definedness condi

tion is the kernel of the difference between SL3 and SL4 .

5.7.2.6 Observability in SL^ and SL^

The denotational definition of the mux instructions offers an interesting insight into the 

difference between SL3 and SL4 . By extension these differences highlight the deep dif

ferences between Esterel and Signal. The previous section gave the semantic valuation 

function M l program  fl in terms of a tuple of four components, the first three of which 

completely characterize the denotation of program , while the fourth component. 

ALGCLOCK ̂ program fl was a formal abstraction that provides a practical means for 

reasoning about the properties of the denotation. In Section 5.7.2.4 the algebraic clock cal

culus was defined for totally observed processes. This restriction to total observability

l. The full presentation of these fields and the metalanguage used to express them can be found in Ben- 
veniste and Le Guemic [64] [66]. A presentation that is specific to the Signal language because it excludes 
rule (iii) can be found in Benveniste and Le Guemic [65]. The elaboration of the metalanguage is elided 
here because the focus is on when a synchronous semantics is well-defined rather than the specific details of 
how it is defined. The interest here is on the definedness of the algebraic clock calculus based on the refer
enced theorem that an algebraic clock calculus exists only for totally observed processes.
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offers the possibility that a well-defined denotation for a program  may exist yet it could 

be that there is no algebraic clock calculus for it. Such is the case in SL3 with its defini

tion of oversampling.

The observability of the mini-language SL3 can be understood by studying rule (iii) 

and its nonlinear effect on time relative of the definition of observability. SL3 violates 

total observability as defined in Section 5.7.2.4 on both counts. The generated oversample 

clock y is suppressed from the macrotime view. This violates the first condition. The 

basic clock, present in every macrotime step, does not dominate every oversample-gener

ated clock y . Neither can it be stated that every oversample-generated clock y dominate 

the basic clock. Thus there is no fastest clock. This violates the second condition and so it 

must be concluded that there is no ALGCLOCK \[program]\ for an arbitrary 

program  e SL3.

In contrast, the other three items in Af|[ program  0 are well-defined for SL3 because 

they involve well-defined operations on clocks. Clocks are sequences defined on some 

domain containing an element J_ which is interpreted as absence. Rule (ii) is defined in 

terms of the projection and intersection of such sequences and rule (iii) is defined in terms 

of finite insertion into such sequences. Thus every program e  SL3 has a well-defined 

denotation yet has no ALGCLOCK dprogram  fl.

Informally, SL4 has the property of total observability whereas SL3 does not because 

of the differing models of time relative to Eq 5-12. In SL4 time is linear and all clocks and 

signals have valuations in instants t e  X. In SL3 time is non-linear, having two dimen

sions, and only some signals and clocks have valuations at instants t e N x {0}. Those 

signals and clocks which do not have valuations on the macrotime axis are suppressed 

from the sequences reported in Eq 5-12. These internal properties are not expressed in 

relationships visible from the axis N x {0} so there is no single clock that can be used
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linearize time as required by Eq 5-12. The linearity of time is fundamental here and relates 

directly to the proof that oversampling can be rederived in a totally observable framework, 

namely that SL2 c  SL4.

5J.2.7 Containment of SL^ in SL^

The containment relationship SL0 c  SL, c  SL2 c  SL3 is clear by inspection the rules 

defining the languages SLk which are given in Figure 5-8. What is not so clear is the rela

tionship between SL3 which includes rule (i i i)  but not (iv)  and SL4 where the reverse is 

true. The relationship SL.i c  SL4 is shown by reconstructing the mux instruction using 

the d e fa u lt  instruction of SL4. The m u ltip le x e r  program in SL4 which performs 

the mux operation of rule (iii) is shown in Figure 5-10. *

multiplexer : : ■  [
u ■ zu - 1

II zu ■ raz default past_u
II paat_u ■ u_0 ->$ u
II

raz ■ C whan past_stop
II paat_stop ■ true ->$ stop
II stop * (u ■ 0)
II synchro C, raz
]

Figure 5-10. The Redefinition of mux in SL4

The proof that the mux instruction of rule (iii)  can be embedded into m u ltip le x e r  

involves constructing its denotation according to M\[ m u ltip le x e r  | j . Intuitively the 

proof follows from the fact that the behaviors allowed by rule (iv) are a superset of those 

allowed by (iii) because in rule (iv), the clock of x  is faster than the clock of either u or v.

1. From Benveniste and Le Guemic [64].
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The same is true in rule (iii) where the clock of x  is faster than that of c.

From the components SYNCH ^ m u l t i p l e x e r ^  and VAL [ [m u ltip le x e r]]  

(written in the metalanguage) it is shown that the signal u  occurs as many times as the 

value of C between occurrences of C. * The performance of m u l t i p l e x e r  is effectively 

illustrated by the chronogram of Figure 5-11. There are three significant points in that dia

gram. The first is that the signal u  is shown to occur the same number of times as the value 

of c  when C occurs. Thus u = m u l t i p l e x e r  C behaves the same as u = mux C. 

Secondly, it can be observed by inspection here that time is linear and the clock of u  can 

be identified as the fastest clock, in fact it is exactly as fast as the basic clock. The third 

point is that _L is used as a filler to denote the absence of a signal in an instant. The signals 

C and r a z  are shown to be often absent This principle extends in the sense that when 

m u l t i p l e x e r  is used in the context of a larger program an arbitrary number of _L filler 

events may be inserted between occurrences of u. In such a case some other clock would 

be the fastest clock.

signal ro 'i t2 h '4 '5 h h r8 rio 'n ri2 ri3 '14 ri5 ' I6 h i ri8
u 2 1 0 4 3 2 I 0 6 5 4 3 2 I 0 3 2 1 0

zu 3 2 1 5 4 3 2 i 7 6 5 4 3 2 1 4 3 2 I
past_u u 2 1 0 4 3 2 i 0 6 5 4 3 2 1 0 3 2 1

raz 3 1 1 5 1 1 1 _L 7 _L 1 1 JL 1 1 4 J_ 1 1
past_stop t / / t / / / / t / / / / / / t / / /

stop f / t f / / / t f / / / / / t f / / t
C 3 1 _L 5 1 1 JL 7 1 1 1 ± 1 1 4 1 1

Figure 5-1L. A Chronogram Showing m u l t i p l e x e r  in Action

I. The exposition of the proof requires the presentation of the semantic metalanguage of clocks which has 
not been developed here. The mechanics of the proof is not material to the presentation here, however the 
proof can be found in Benveniste and Le Guemic [64], Section 4.3.1.
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S.7.2.8 Summary

A subtle shift has occurred between SL3 and SL4 . In the former case, the baseline time 

units are macro instants Ti whereas in the latter case the baseline unit is the microtime 

instant . In SL3, the m ux  instruction produces clocks that are faster than the macrostep 

identity clock that is present at every Tr  These faster clocks are Unitary and were given 

the label 8y in Figure 5-9. In the macrostep projection of time onto X x {0} these transi

tory clocks are elided resulting in an incompletely observed process. In SL4 every 

instruction produces clocks that are no faster than the microstep identity clock which is 

present at every t[. In the context of Figure 5-9 time is linearized by following the causal
k

paths through X x X,. and mapping this timeline onto X . Thus the example of the fig

ure can be redrawn linearly as shown in Figure 5-12.

^1 ^2 L  f t  ^6 L  ^8 ^10^11^12^13^14^15^16^17^18^19^20^21^22^23^24^25^26^27^28^29^30^31^32^33

Figure 5-12. The Linearization of Time under Rule (iv)

The denotational theory of the Synchronous Languages hinges around this linear model 

of time. It is useful to think of macrotime and microtime as being “slow time” and “fast 

time” respectively. The difference between SL3 and SL4 can be summarized in terms of a 

choice between a baseline in slow macrotime with the fast microtime being derived and 

unobservable or a baseline in fast microtime with slow macrotime being derived using 

explicit markers denoting its passage.

5.7.3 Synchronous Programming Languages

The denotational theory of the Synchronous Languages one can describe the synchro

nous programming languages in terms of their overall attributes and an association with a
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particular mini-language SLk. The following paragraphs summarize the four Synchro

nous Languages within this framework. *

Lustre

Lustre is a functional language. The basic construction in the language is the node 

which defines a set of dataflow equations mapping input sequences to output sequences. 

In this sense Lustre is a pure dataflow language. It is also purely reactive in the sense that 

every output can be directly traced to an input occurring within the same instant. No out

put sequence occurs faster than any input sequence.

Lustre is related to SL, with the modification that in rule (ii), for y = x  when b the 

clocks for x  and b must be the same. The important effect of this modification is that the 

clock tree can be determined from a analysis of the program communication graph. This is 

the reason why Lustre is said to surpass the RMC Barrier through a static structural 

restriction to RMC. This restriction basically amounts to checking that the equation 

dependency graph is acyclic.

Signal

Signal is a language in the functional style. It is however a relational language in the 

sense that the context in which outputs are used can affect the rate at which inputs are con

sumed. The language designers view Signal as a sort of programming by constraint with 

the program behavior being the intersection of all the constraints. The abstract form of 

these constraints is SYNCH \[program]\ and VAL \[program^ ; their material form is 

given in ALGCLOCK ftprogramfl. Signal is not a reactive language in the sense that it

l. The characterization of Lustre. Signal and Esterel draws directly from the conclusions in Benveniste and 
Le Guemic [64], Chapter 5. The association of Argos with SLl is novel to this presentation.
Other relevant information about these languages such as their syntax, implementation strategies and appli
cation focus can be found either in addition to the original publications cited on page 239 or in tutorial pre
sentations o f these languages can be found in Halbwachs [3201 or the IEEE Special Section on Another Look 
at Real-Time Programming [621 [101] [321] [4651.
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is possible to write programs in which the output occurs faster than the input.1 It is how

ever always possible to choose the fastest clock as the identity clock.

Signal corresponds almost directly to SX4. In fact, SL4 can even be viewed as a sublan

guage of Signal. Synchronization constraints in the language are derived from both the 

control and data dependencies in the equations. This gives Signal programs fine-grained 

control over the computation. This generality has a cost in that it is possible to write con

tradictory Signal programs which can only be detected from a dynamic analysis of the 

program behavior. Signal surpasses the RMC Barrier by a dynamic restriction to RMC. 

The ALGCLOCK I,programD provides a formalism for this dynamic analysis.

Esterel

Esterel is an imperative language. The basic constructors in the language are sequential 

and parallel composition which are resolved in a deterministic fashion. The fundamental 

semantics of the language is given in terms of event derivatives on the language inter

preted as process algebra. Esterel programs have finite state so there are be a finite num

ber of such derivatives. The derivatives are associated with the states of an automaton thus 

giving direct interpretation of Esterel programs in terms of automata. Later developments 

have produced less obvious interpretations based on hierarchical abstract machines and 

synchronous circuits. The RMC Barrier is approached with restriction to RMC within the 

reachable transitions of the automaton.

Esterel programs map input sequences to output sequences as do all synchronous pro

gramming languages. They are purely reactive because and all synchronization con

straints can be expressed in term of relationships between the input and output ports. No 

output event may occur without a direct input cause in the same instant. Though fully 

reactive, the interpretation of Esterel programs as causal processes has been shown to be

L. The m u l t l p l a x e r  program of Figure 5-10 is one such example.
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only partially observed. The behavior within the trans-microstep definition of a mac

rostep is hidden in the sense that observation is only allowed at the end of an instant and at 

the beginning of an instant (the end of the previous instant). For these reasons it is not pos

sible to choose any fastest clock in an Esterel program. Esterel is said to be related to SL3 

because the mux  of rule (Hi) clearly has relation to the intra-instant serial composition 

operation.^

Argos

Argos is a state-centric language with essentially the same set of notational features as 

StateCharts [330). In contrast however with the ad hoc semantics shown in Example

4.3.4.6 the Argos semantics are synchronous. The RMC Barrier is addressed with a direct 

analysis of the transition structure of the implied automaton; only self-consistent descrip

tions are admitted. Argos has no support for data variables or a sequential constructor. 

Thus causal processes modeling the same behaviors have total observability. Argos pro

grams are simply finite state machines with inputs, state and outputs, all sharing the same 

central clock. The direct association is with the mini-language SL{.

5.8 Communicating Reactive Processes (CRP)

The semantics of the Synchronous Languages offers wide possibilities for language 

design. Not only are there the dimensions of style, state-based versus imperative versus 

data-flow, but there are also choices between partial and total observability. The Synchro

nous Language semantics however are fundamentally RMC and do not provide direct 

support for the control of asynchronous, long-running or multi-instant operations. Such 

has been found to be useful in the control of long-running tasks from within the synchro

1. Again, this is left as a conjecture c.f. Benveniste and Le Guemic [64], Chapter 5. There are other subtle 
differences between Esterel and SL3 which are glossed over in that analysis as well. Among these is that 
data-centric computations in Esterel are unclocked and permanent across instants: variable declarations do 
not correspond directly to the register rule (ii) and there is no way to specify synchronization via variables 
using rule (i) and synchro. Such constraints can be expressed in Signal which is expressible in SLA.
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nous framework [5761. Berry’s Communicating Reactive Processes (CRP) [831 addresses 

this by mixing the synchronous reactive semantics of Esterel with the asynchronous trace- 

based semantics of CSP. The CRP semantics has two largely separable levels with RMC 

holding at the lower level and RMC holding at the upper level. This blending of CSP and 

Esterel is illustrated in Figure 5-13.

( ----------------------------1-----N
CSP — ► Traces ► r m c

Esterel —► Automata -► r m c

V_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ j

Figure 5-13. The Separated Semantics of CRP

The CRP semantics can be seen as an instance of Huizing and Gerth’s separated seman

tics as presented in Section 4.4.2. They proposed addressing the RMC Barrier with a two- 

level scheme in which a different two-of-three choice among R . M and C is made at each 

level. Their particular preference however was for RMC at the low level and RMC at the 

high level.

In CRP the material and theoretical presentation of the language and terminology of 

CSP is introduced into the Esterel process algebra with a synchronizing r e n d e z v o u s  

instruction operating over bidirectional channels. There are two parts to a rendezvous, the 

sending part and the receiving part. For synchronization and communication to occur, one 

process must be executing the sending phase of the rendezvous and at the same time a sec

ond process must be executing the receiving phase. Either process blocks until this condi

tion holds and at that point the value is transferred between the two processes and they are
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said to share an instant. This is exactly consistent with the notion of synchronizing com

munication in CSP. In CSP channels are not a broadcast medium. They are buffered so 

there is a some extra machinery which provides for the serialization as well as the ability 

to abort a pending rendezvous request based on a synchronously-supplied signal.

In CRP there is a distinction between small and large coordination schemes. “In the 

small,” synchrony and its determinism is both a direct benefit can be reasonably managed. 

The synchronous semantics does not come without some cost as a verification that the 

system description has the C property and the perfect synchrony hypothesis holds at the 

implementation level must be performed. At the upper level of the semantics, “in the 

large,” the asynchronous trace-based semantics of CSP applies. This structure has the ben

efit of allowing the Synchronous Language semantics to manage coordinating compo

nents which are tightly coupled, a task for which they are well suited, yet retaining the 

freedom afforded by the asynchronous interleaved semantics in managing loosely coupled 

executions.

5.9 Review

Each of the previous seven sections developed an example of applied semantics within 

the framework of the RMC Barrier and the means for surpassing i t  The examples started 

from the simplest possible concurrency scheme. Asynchronous Shared Memory and pro

gressively explored the possible ways of adding different features and kinds of structure to 

the semantics. The examples reached their height of expressive power in the Communi

cating Sequential Processes and the Clarke Languages of Section 5.5 and Section 5.6. 

There it was shown through certain refinements and restrictions of the two formalisms 

that there are language features which cannot be present in a semantics if it is to remain 

decidable. Decidability, or rather its lack, establishes a strong upper limit on the expres

siveness that can be tolerated in a semantics oriented a formal methods of synthesis and
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verification over and above the limits defined by RMC Barrier Theorem.

The semantics of Synchronous Languages, an RMC semantics which admits only sys

tems which happen to have C, is shown to offer as much expressiveness as can be toler

ated without crossing the line into undecidability. The microsemantic analysis of Example 

4.3.4.4 showed that the Synchronous Language microsemantics was distinguished in Ex 

4.3.4.4-2 by microstep enabling conditions £ f0) which are defined by the outputs pro-
i

duced across the (state-dependent) full path 8. An alternative characterization of Synchro

nous Language semantics was given in Section 5.7.2 with the Denotational Semantics of 

Synchronous Communicating Systems. That theory, which is completely independent of 

the RMC Barrier Theorem, highlighted the notion of trans-microstep observability and its 

relationship to the linearity of time as the key distinguishing feature of Synchronous Lan

guage semantics.

Finally Berry’s Communicating Reactive Processes were presented as an instance of a 

separated semantics which potentially offers the best of both worlds. The predictability 

and determinism of RMC Synchronous Language semantics is appropriate for tightly 

coupled coordinating subsystem at the fine level. At the coarse level the trace-based 

RMC semantics of CSP naturally supports nondeterministic and asynchronous communi

cations ofloosely coupled coordination schemes.
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System Description Languages

The previous chapters exposed the contributions and limitations of semantic models in 

the description of systems. There the focus was exclusively on the underlying mathemat

ics with an emphasis on theoretical constructions and notions of expressibility or the lack 

thereof. It remains to relate these theoretical properties in semantic models to proposed 

and existing specification languages.1 In the abstract, establishing this relationship in a 

proposed language is properly the design of the language itself. More concretely in the 

case of an existing language, establishing the semantic basis of the language in the forego

ing theoretical framework is essentially a form of post hoc analysis or criticism given the 

clarity of hindsight. In its most ambitious form, language design and analysis requires tre

mendous breadth encompassing such issues as the specifics of the syntax, the mechanics 

of the type system, the practicalities of implementations and a host of other issues.*" What 

is needed for the treatment here is quite a bit less aggressive and indeed more subtle: a 

general viewpoint which at once highlights the relationship of languages to their semantic

1. As explained in Chapter 1. the extra qualifier specification or programming modifying the noun language 
is adopted where necessary to distinguish this usage from that of the set-theoretic structure describing the set 
of possible behaviors of the system.
2. A useful survey of programming languages which includes a substantial bibliography is Salomon's tax
onomy [63S] which is based on the four dimensions of programming language independence: I. the target 
machine (more generally the usage architecture). 2. the problem domain. 3. human aspect (user qualifica
tions), 4. concepts of time (in the sense of program lifetime).
A treatise concerning trade-off issues in language design is Hilfinger’s [348] analysis of Ada.

265

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

model while at the same time abstracting away the particular idiosyncracies of syntax and 

implementation. Additionally there should be some way to use the analysis developed to 

predict future developments in languages, or more pragmatically to highlight the deficien

cies of current languages in such a way that new solutions can be proposed.

One way to understand language design in a very broad way without becoming bogged 

down in the actual details of any one language instance is to approach the analysis from an 

evolutionary perspective. In this light, a language is a manifestation of the application 

interests and implementation understanding available at its time of creation. It is a snap

shot which captures one slice of a continuing stream of changes in application domains 

and implementation techniques. Taken in context therefore the evolutionary point of view 

is explicitly historical, focusing on the comparison and contrast of between languages 

rather than on the specific features in any one instance. Conveniently it allows the 

strengths and weaknesses of languages to be analyzed across broadly-defined generations. 

Strengths are shown to be replicated to succeeding generations while weaknesses are seen 

to die out as solutions are adopted or as the underlying application domain changes to 

avoid them. Finally the evolutionary perspective gives some sense of the future direction 

of languages by highlighting both trends over time and also persistent problems.

The application area relevant to this work is the specification of synchronous finite- 

state systems specified by software-defined models. From the executable model, imple

mentations are derived in either in hardware or software either automatically or by manual 

reimplementation. The following sections examine the evolution of system description 

languages concentrating on hardware description languages (HDLs) as executable specifi

cations of system behavior. * There are two main thrusts to the argument presented. The 

first is a historical one which explains how HDLs arrived at their current state and in fact

1. Though the treatment here is on hardware description languages, there has been interest in using HDL 
specifications to describe embedded software systems as well, c.f Gajski et al. [277] or Chiodo et al. [169],
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what that state is relative to the theoretical framework of the RMC Barrier Theorem and 

microsemantic analysis. The second is a projective one which identifies the weaknesses in 

the current generation of HDLs and offers a proposal for how the next generation of lan

guages could better take advantage of the increased understanding of semantics provided 

by the theoretical framework. Weaknesses are characterized in terms of an intuitive notion 

the distance between the semantics of present-day HDLs standards and the semantics of 

the synchronous languages. The proposal aspect explores the opportunities and costs of 

minimizing and even removing this distance.

6.1 An Evolutionary View of Specification Languages

The uses of system descriptions have changed in important ways over the years. This in 

turn has led to changes in the sorts of features which are considered appropriate in the lan

guages used to describe them. From the integrated circuit perspective, there has been the 

trend away from explicit modeling of the underlying physical effects like drive strength 

and charge-sharing, however, even within the realm of synchronous digital hardware 

descriptions, there has been evolution in the features and focus of system description lan

guages. The ever-increasing complexity of system being designed has inexorably forced 

the adoption of more abstract models as specifications of system behavior. Too. with the 

advent of techniques such as technology-independent gate libraries and technology map

ping there is much less of a need to describe what gates are in the design and more of a 

need to describe what it does.

The evolution of system description languages can thus be traced across three distinct 

application domains: simulation, synthesis and (formal) verification. The earliest and 

most basic use is in simulation which defines components operationally; the system is 

what the model executes. The second use is synthesis or rcsynthesis where the key issue is 

the determination of the mathematical function computed by the model. From that
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abstract definition a different implementation of the description is created which opti

mizes some resource according to some given constraints. Most recently, there has been a 

resurgence of interest in formal verification techniques, driven largely by the development 

of implicit OBDD-based methods for the manipulation of large sets. ̂  In turn this has 

spurred interest in the issues concerning the interfacing of system description language 

semantics and formal verification techniques. In fact, this work can be seen as a contribu

tion in this last area.

The following sections present the argument that each of these domains has placed a 

largely orthogonal set of demands on system description languages. This has caused evo

lution both in language semantics but also in the problem domain itself. Further and more 

significantly though, this evolution process has progressed to the point where there is now 

nearly universal agreement that the needs of ultra high speed simulation, synthesis and 

formal verification are largely the same.

6.1.1 Simulation Orientation

The system description languages can be classified into two major classes, low level 

languages and high-level ones. The low level languages are simple single level descrip

tions used mainly for design interchange or directly for simulation. They are generally 

referred to by the term internal representations and are typically thought of as being the 

target of a higher-level compilation or synthesis process. One of the most common is a 

form of three-address code [10]. They have a form of syntax though it tends to have the 

non-textual form of a data structure. As well they have some notion of semantics so it is 

useful to describe them as simple languages.

The higher level consists of languages which are more reasonably characterized as sim-

I. An overview of the relevant results was presented in Section 3.3.4.

268

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

illation control languages. Examples in this class are languages such as ADLIB [351], 

BDS [229], HARPA [7071, Helix [2021, HSL-FX [5611 and iHDL [3901 or the industry 

standard simulation languages VHDL [384] [387], Verilog [5701 and UDL/I [404].1 The 

common thread among all these languages is that they are all based around the activities 

of a set of simulator data structures such as an event queue, time wheel or delayed assign

ment block which are presumed to exist in any conforming implementation. The behavior 

of models described in these languages is operationally defined by the interaction of the 

model with the simulator event control.

Probably the most well accepted simulation scheme is the discrete-event paradigm. 

There the execution of model components cause events which then trigger other compo

nents to execute. A model of time is involved so that events can be triggered at points in 

the future. The power and generality of the discrete event model comes from the ability to 

support data-dependent delays. Conceptually it is also very simple. VHDL and Verilog are 

both discrete event simulation languages.

The advantage of the discrete-event paradigm lies in its generality. In the case of 

VHDL, the generality has allowed VHDL to be used for applications ranging from perfor

mance analysis [639] to device-level modeling at the switch level [2011. The more reason

able and mainstream uses involve the representation of combinational logic, sequential 

circuits such as pipelines and interacting finite state machines and simple netlists of 

blocks and library elements. The power of the discrete-event paradigm allows models 

written at various levels of abstraction and detail to be simulated through one extremely 

general event queue data structure and simulation cycle. The disadvantage of the discrete- 

event paradigm is that there is no presumed level of description so in a strong sense the

1. Formally, the semantics of UDLA is defined by the NES model presented in Section 2.3.1. The NES 
model however has not been shown to lend itself to practical implementations. For realistic implementations 
therefore, the UDLA language semantics, is defined by the traditional simulation algorithms.
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meaning of the model as a specification is in the eye of the beholder.

6.1.2 Synthesis Orientation

From a simulation perspective what is important about a language is the features that it 

supports and how those features interact with the prescribed implementation. This per

spective became problematic when the application domain widened to include not only 

simulation but also synthesis. From a synthesis perspective the focus is on determining 

what a model means in a mathematical model so that a better implementation of it can be 

selected. The rise of synthesis as an important application of languages was the first time 

when language semantics became truly significant in the design process.

As with the simulation-oriented languages one can distinguish both high and low levels 

in synthesis-oriented languages. As with the previous case, there has been little contro

versy over the form of languages at the lower level. Languages at this level are largely ori

ented at the description of logic networks at the gate-level including registers. Examples 

include the Berkeley Logic Interchange Format (BLIF) [6491 or the Structural Logic 

Interchange Format (SLIF) [493]. There are other instances such as the Software/Hard

ware Intermediate Format (SHIFT) [167] or the Stanford University Intermediate Format 

(SIUF) [720] which are oriented at software synthesis and simulation respectively.

6.1.2.1 The Hardware Semantics

In contrast with the low level, there has been quite a lot of evolution at the high level. 

The original use of high level languages as specifications started with software program

ming languages (SPLs).1 This original use could be called the search for the hardware 

semantics of SPLs because the research attempted to identify an interpretation for sequen-

l. Girczyc [2861 made a distinction between Hardware Description Languages (HDLs) and Software Pro
gramming Languages (SPLs) in his use of Ada as a vehicle for specifying VLSI-level hardware.
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tiai programming language in terms of synchronous digital hardware. The hypothesis was 

that there was some vantage point from which an analogy between the execution of a pro

gram written in an SPL and executing on a general purpose computer and such a program 

executing in concurrent coordinating components of VLSI-level hardware. While one 

must be careful to distinguish research which was oriented at defining the high-level syn

thesis problem itself or at evaluating a specific approach to one of its subproblems there 

are a number of projects that explored the use of SPLs as specifications for synthesis. 

With this in mind one can identify attempts to use Pascal [691] [692], C [616] [145] and 

Ada [286] [287] [288]. One can even view Ku’s Hardware C [445] [446] [447] as being 

part of this evolution.

Various reasons were proposed for pursuing the hardware semantics analogy approach. 

Among these reasons can be cited that no new language needed to be learned by design

ers, the development environments for SPLs were mature and actively maintained, on a 

related note, the development of a simulator for the “hardware'Mnterpretation of an SPL is 

trivial {c.f Barbacci et al. [52]) and finally it might be convenient to develop the hardware 

specification and the software which runs on it in the same language. Given the wisdom 

afforded by hindsight, the identification of a hardware semantics analogy for SPLs can be 

seen as being fairly simplistic. Despite the alleged advantages, the fact remained that SPLs 

lack an intuitive fit for the system specification problem. Today it is commonly agreed 

the three factors which are missing are a model of concurrency, a model of time and the 

exposition of constraints.

On counterpoint to the SPLs, functional languages were proposed as appropriate for 

high-level system specifications. Here the analogy between the software model and the 

hardware could be argued to be more direct or even obvious: when the hardware imple

mentation in combinational logic is functional then so should the software model specify

ing that implementation be functional. Languages in this class included Daisy [407], Ella
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[540] [5411 [542], nFP [651], FHDL [524], STRICT [151], Silage [349], recurrence 

equations [562] and HML [466] [467].

6.1.2.2 Representations and Data Structures

It became obvious after a time that neither SPLs nor functional languages were the 

definitive solution to the specification problem. In response, the search changed from 

attempting to define a convincing analogy between the software specification and the 

hardware implementation to one of finding the appropriate internal representation. This 

representation was a hypothesized data structure, typically a graph or tableau, which could 

abstract away the superficial peculiarities of the description language and provide a suit

able basis for the key applications of the era: both simulation and synthesis. The goal was 

to define a data structure which would organize the information from the high level lan

guage in a way that enabled the relevant scheduling, allocation and binding algorithms. 

Additionally, if the data structure could be shown to be canonical then the claim could be 

made that structurally different but behaviorally equivalent descriptions would turn out the 

same after the optimization steps. Too, by representing behavior in a neutral format such 

as a graph, it could be convincingly stated that the synthesis procedure was general 

enough to support multiple languages.

This change moved the focus away from the language level where the basic units are 

statements, expressions and control flow to a finer level of detail which exposed depen

dencies and allowed for the expression of various sorts of constraints. The internal repre

sentation approach to hardware semantics in a sense predates the analogic approach. It 

was first used by Snow [664] to define the meaning of ISPS [51] [531 programs in terms of 

the Value Trace (VT) [512]. Even so, the VT representation did not so much define a 

semantics so much as it enabled a certain class synthesis activities. In fact one claim of 

that early work was that it was reasonable and proper to approach the high level synthesis
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scheduling and allocation problem purely in terms of algebraic constraint relations among 

the uninterpreted operation nodes in the graph-based representation [3181 [319]. The con

straints are solved by techniques such as mixed-integer linear programming and the result 

can be claimed to be optimal relative to the constraint conditions.

After this early work there was a gap with the bulk of the internal representation propos

als being presented after the language-driven approach had substantially run its course. 

Among the many proposals were such representations as the Design Data Structure (DDS) 

[436] or the Behavioral Intermediate Format (BIF) [242] [2441. These representations fea

tured not only the means for organizing the operations and operation ordering which is 

extracted from the raw parse tree, but they also addressed the issue of the bookkeeping 

needs of the scheduling, allocation and binding phases of high-level synthesis.

Schemes for high-level synthesis of VLSI-level hardware had always been patterned at 

some level after similar schemes for software compilation. It was therefore natural to 

adopt and adapt internal representations from software compilation into the hardware con

text. In the software compilation domain, the static single assignment (SSA) form [151 

[6251 and the program control dependence graph [2611 came to be seen as the natural and 

appropriate internal representation for programs. This appropriateness was justified by the 

optimization and code generation algorithms which were enabled by the representation. 

The natural analogs of these forms for hardware synthesis domain were defined as well. 

Among these it can be mentioned that the Assignment Decision Diagram (ADD) [1601 

[161] and its more recent extension with the Condition Graph (CG) [412] [413] general

ized the SSA form.1 The Control/Data-Flow Graph (CDFG) [152] or the Control Flow 

Graph (CFG) [274] generalized the control dependence graph. Here too, the justification

1. An earlier use of single assignment occurred in Segal’s [647] combinational logic synthesis from a subset 
of BDS [229]. The ADD form however makes a direct connection to SSA in the explicit representation of 
the 9 -functions of SSA in the Condition Graphs.
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for these forms was the optimization algorithms which were enabled by the representa

tion.

6.1.23 Underspecification

One flaw seen in the graph representations was that they encoded what must occur in an 

implementation but failed allow for the expression of constraints or for underspecification. 

Proposals such as Operation/Event Graphs [16j [17] and Dataflow/Event Graphs [719] 

attempted to patch the flow graph model to address this deficiency. Other proposals for 

underspecification, the representation of timing slack and other optimization opportunities 

approached the problem from an automata-theoretic basis. The FSM Network Model 

[724], the p-Automata [235], Production-Based Specifications [645] [646], the Behavioral 

Finite State Machine (BFSM) [679] [725] and the High-Level Finite State Machine 

(HLFSM) [71] can be mentioned as examples of this approach. These last two, the BFSM 

and the HLFSM representations were ultimately adopted as part of a commercial policy- 

of-use for high level synthesis which governs the identification of degrees of scheduling 

freedom available in a given Verilog and VHDL model [437].

6.1.3 Verification Orientation

The common thread running through all of the synthesis-oriented internal representa

tions is the concentration on the algorithms which are enabled by the representation. This 

is their justification. More recently the application domain of languages has been 

expanded yet again with the renewed interest in formal verification techniques. This inter

est is driven by new symbolic algorithms and representation techniques [137] which avoid 

the state explosion problem which plagued older methods. These methods are predicated 

on being able to characterize the system’s execution in terms of discrete steps; macrosteps 

in the parlance of the previous chapters. The verification problem is defined in terms of 

properties which must hold across sequences of macrosteps. The languages designed for
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formal verification must be related to a relevant mathematical structure such as the Kripke 

structure or one of the various co-automata. The definition of this relationship is exactly 

the definition of the language’s semantics. What is critical in a verification-oriented lan

guage is not any purported fit or flexibility relative to a simulation scheduling scheme or 

whether one can express degrees of freedom on resources or timing, rather it is that there 

is a clear definition of how programs in the language execute.

As with the simulation and synthesis cases, one can distinguish, two levels of verifica

tion-oriented languages: a high-level and a lower-level. The low-level languages tend to 

have few features and there is little controversy about their suitability. Without much 

effort one can make a determination that the language either has features appropriate to 

the task at hand or it does not. The low-level languages tend to be fine-grained, based 

around a few simple primitives that can be connected together in large networks, possibly 

with some features for structural abstraction. Typically they are simple systems such as 

the network of multi-level logic and latches. Examples in this class of language include 

BEAVER [381], BLIF-MV [107] and even SMV [518] which all describe a form of 

abstract netlist.

This leads to a very simple two-phase scheme for verification from high-level lan

guages. The first step is a synthesis procedure which takes the high-level language 

description as a source and produces an implementation in the low-level. Verification then 

occurs directly on the low-level description.

One must be careful at this stage to distinguish between cases where the high level lan

guage is interpreted in terms of some lower level mathematical model like a Petri net. a 

trace set or a network of communicating finite state machines and the cases where the 

high level language is embedded into the lower level language through an explicit synthe

sis step. The first situation is a case where the high level language’s semantics is being
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defined. It is a theoretical construction. In contrast, the second situation is one where the 

well-understood semantics of the low level language is exploited to give concreteness to 

the verification process. This synthetic embedding is a practical procedure with the result 

having a material form and being subject to measurable optimality criteria. The subtle dis

tinction between the two cases is that in the first, different interpretations produce differ

ent semantic definitions while in the second different synthesized embeddings produce the 

same semantics but vary according to the optimality criteria.

One instance of this scheme is the HSIS [37] verification system which compiles [164] 

extended Verilog descriptions [49] into a network of logic and latches represented in 

BLIF-MV [1071. The verification is performed at the logic network level. There are 

numerous other examples in this vein that can be named. There is the CROCOS verifier 

[523] in which SDL [ 158] descriptions are compiled into the E-FCS mini-language which 

in turn has a semantics defined in terms of Dijkstra’s wp-calculus [237]. Beer et al. [59] 

report a design flow under which descriptions in VHDL and a proprietary IBM HDL are 

synthesized to the gate level. The gate-level descriptions are written out in SMV [518] and 

the verification occurs at the SMV level. Courcoubetis et al. [214] posit * a design flow 

under which arbitrary VHDL descriptions including timing are transformed into Kurs- 

han’s S/R [424] language which has been extended with certain real-time operators.

There are other more exotic examples of low-level verification-oriented languages with 

different emphases and levels of generality that can be named as well. Milne’s CIRCAL 

[526] is a process algebra formulation of digital hardware behavior. It can be viewed as 

both a simple HDL and as a process algebra. Dill et a l 's Ever [239] [370] supports a non- 

deterministic interleaved style of semantics and is essentially a metalanguage type of 

notation for expressing verification problems.

I. In Courcoubetis etal. [2141 the transformation procedure is defined. Also reported was the fact that, as of 
the time of publication, the procedure had yet to be implemented.
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High level languages with formal semantic definitions can be distinguished as well. 

These have evolved in a number of ways over the years. On the one hand there were 

experiments with languages having exotic semantics, these varied widely as different 

approaches were tried over time. Examples in this realm include the imperative-style lan

guages which have semantics defined by interval temporal logic such as Tempura [326] 

[546] [547] and Tokio [25] [4401 [551]. Chandy and Misra’s UNITY [1591 and its deriva

tive for hardware system description Murcp [239] [370] used a nondeterministic interleav

ing semantics.

On the more traditional end of the spectrum were the proposals for languages which 

explored various synchronous alternatives. These languages are typically characterized by 

having finite state, static inter-process communication patterns and the macrostep cycle- 

level attributes necessary for placement within the framework of the RMC Barrier Theo

rem. This class includes Kurshan’s S/R [424]* which was originally an RMC language 

but was later extended to be RMC . Browne and Clarke’s SML [122] [123] and CSML 

[1931 [1951 which is RMC. Finally there is the family of Synchronous Languages. 

Esterel, Argos. Lustre and Signal which are surveyed in Halbwachs [320] and whose 

RMC semantics was presented in some detail in Section 5.7.

6.2 Hardware Description Language Standards

Despite the deep exploration of language possibilities shown in the preceding section, 

the standardized hardware description languages (HDLs), Verilog [570] and VHDL [384], 

have become accepted and even explicitly required in design flows with implementations 

becoming widely available in the early part of this decade. In the face of this, rather than 

proposing new languages or representations of behavior, more recent work has turned to 

finding ways to work with descriptions written in these languages, flaws and all. Unfortu

1. An analysis of the S/R semantics was accomplished in Section 5.2.
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nately, the discrete-event basis of these HDLs makes it very difficult to analyze the prop

erties of arbitrary descriptions. On the one hand, this problem can be blamed on history as 

the standardization efforts came at a time when discrete event simulation of gate-level 

descriptions including timing and drive effects was essentially the only application 

domain. On the other hand, the problem has not been solved in recent years because there 

has been little understanding of what other sort of semantics to offer. As a partial solution 

to this, the more recent interest in cycle-level simulation, hardware synthesis, even soft

ware synthesis and the current interest in formal verification has led to proposals for HDL 

subsets and extensions that are more amenable to the techniques used in these domains. 

Before addressing the development of HDL subsets or extensions there must be some 

understanding of why these languages in their current state are problematic.

6.2.1 Discrete-Event Semantics

The fundamental problem with the standard HDLs is that they are based on the discrete- 

event paradigm. The intuitive perception is that their discrete event basis makes it very dif

ficult to analyze a given system description and extract its cycle-to-cycle behavior. The 

difficulty stems from the complexity of an operational semantics defined by a simulator 

event loop. To date there have been few attempts at explaining this perception at a deeper 

theoretical level. The formal addenda [3851 [386] and critiques have concentrated mainly 

on type inference issues and internal consistency. Having an explanation of why the dis

crete event model is problematic at the operational level would offer the possibility of pro

posing a different simulator event loop which did not suffer from the problems or of 

demolishing the idea of the event loop altogether.

Two attempts to analyze the operational bases of these languages can be distinguished. 

The first is the annotation language approach of the VHDL Annotation Language (VAL) 

[35]. In that work, the aspect of preemption was identified as the key flaw in the discrete
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event semantics of VHDL. In response an anticipatory semantics which avoids preemp

tion semantics was proposed. This approach is an instance of a more general scheme for 

identifying a non event-driven semantics to VHDL. A more in-depth presentation of VAL 

is deferred until Section 6.3.1. The second analysis of VHDL investigated its time model 

and simulation cycle through an information model formulation [304] [305]. Both these 

latter analyses however were oriented more at producing a precise specification of the 

standard; the critique they offered was at best a derived notion. Here, with the benefit of 

the RMC Barrier Theorem the theoretical framework can finally be given. Before that pre

sentation however, the level of commonality between the semantics of Verilog and VHDL 

must be established.

6.2.2 VHDL and Verilog

The superficial differences between the two HDL standards has colored much of the 

debate on their utility and suitability. The distinctions between HDLs have come to be 

seen as being based on a vague notion of intuitive fit with a prototypical designer’s needs. 

Arguments have been put forth that the C-style syntax of Verilog is more suitable for an 

HDL than the a Ada-style syntax of Verilog. The substantive differences between the two 

languages stem more from industry investment issues such as the availability and quality 

of simulator implementations, third-party model libraries and a user base familiar with the 

language. In short, these arguments tend to have primarily a cultural and business thrust 

being based more on feelings of personal preference with the latent justification being the 

sunk cost in the existing infrastructure. As well there are engineering-level differences 

which are surfaced at the user level. These included the fact that VHDL is has a very rich 

but strong type system whereas Verilog has a very weak but weak type system. This 

allows very detailed, intricate and incompatible logic modeling packages to be developed 

in VHDL whereas the four-valued strength model of 0 , 1 ,  X and Z is essentially fixed in 

Verilog. Such incompatibility caused by excess flexibility must be solved through post
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hoc standardization efforts such as the IEEE’s L o g ic_ S y stem  standard for representing 

multi-valued logic in VHDL [89].

62.2.1 The Event Queue Paradigm

Fortunately it is fairly easy to see, within fairly broad limits, that at the semantic level 

the discrete event model used in Verilog and VHDL are essentially the same. Both simula

tor event queues are predicated upon the execution of processes which in turn cause events 

to be scheduled for the current or a future time point. In such a scheme there are explicitly 

two sorts of time. There is a macro level which is measured in terms of discrete units such 

as seconds, or more commonly nanoseconds. There is also a finer level, commonly 

referred to as 8-time, which expresses the ordering relationship of computations and 

events within a single time point.
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Figure 6-1. The Simulator Event Queues of the Discrete Event

Operationally, the simulator event loop for both VHDL and Verilog are defined in terms 

of event queues which organize the events scheduled for the time points. The event loop 

processes events in the event queue for the earliest time point. The events trigger the invo

cation of processes in the model which are sensitive to those events. The execution of the 

triggered processes in turn causes more events to be enqueued either for the same time
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point or for a future time point. Because the invocation of a process may schedule events 

for the current time point as well as future time points, there is an iterative nature to the 

processing of a time point through the event loop: events are processed until there are no 

more events queued at the current time step. The structure to time and its associated time 

queues as illustrated in Figure 6-1.

A simulation cycle consists of the following steps:

1. If no driver is active, then simulation time advances to the next time 
at which a driver becomes active or a process resumes. Simulation is 
complete when time advances to TIM E'H igh .

2. Each active explicit signal in the model is updated. (Events may occur 
on signals as a result).

3. Each implicit signal in the model is updated. (Events may occur on 
signals as a result).

4. For each process P , if P is currently sensitive to a signal S . and an 
event has occurred on S in this simulation cycle, then P resumes.

5. Each process that has just resumed is executed until it suspends.

Figure 6-2. The VHDL Simulation Cycle

In the case of VHDL, the IEEE standard formally defines the fine structure within a sin

gle time step by specifying the simulation cycle event loop explicitly. The VHDL simula

tion cycle is shown in Figure 6-2.  ̂There the fine structure is the 8-step which consists the 

execution of the set of runnable processes that are resumed in step 4. The salient point 

about the 8-step formulation is that all the processes at a particular 8-step have the same 

view of the simulator state. Signal assignments executed in the current 8-step only 

become effective at the start of the next 8-step, in steps 2 and 3 of the simulation cycle. 

From the viewpoint of the simulation cycle therefore the macrostep consists of an arbi

trary number of 8-steps. The number is arbitrary because the current macrotime point is

l. From IEEE Std 1076-1987 [384], Section 12.6.3. page 12-14.
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only updated when there can be no more 8-steps in the current macrotime point. The tra

ditional depiction of VHDL’s time model is illustrated in Figure 6-3 with the implicit 

understanding that at each 8f consists of the invocation of a set of processes that were 

resumed for that 8r  Specifically, each process which is resumed in the 8/ sees the same 

simulator state. This view is made precise in Section 6.2.3.1 and Figure 6-3.

Figure 6-3. The Traditional View of Two-Level Time in VHDL

6.2.2.2 Differences in Event Queue Management

Between the two languages there are some minor differences in the conceptual location 

of the event queue. In particular, in VHDL the event queue is conceptually associated with 

the driver of the signal and a signal driver is typically associated with a particular process. 

In the case where a signal is driven by multiple processes as in the case of a bus or register 

signal, a distinction is made between the driving value of the signal and the effective value 

of the signal. The driving value is the value which is assigned to the signal in a step 

whereas the effective value is the value which actually appears on the signal as a result of 

the assignment. The driving value and the effective value may be different in the case of 

bus or register signal kinds or when there are implicit type conversions defined for the sig

nal.

In Verilog on the other hand, the event queue is conceptually associated with the current 

lexically enclosing scope. Normally the two schemes produce the same results, but there 

is a subtle interaction between the Verilog t a s k  construct and the non-blocking assign

ment. 1A task is similar to a procedure in VHDL. The non-blocking assignment of Verilog
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and the signal assignment of VHDL are substantially the same. Both affect the value of 

the signal after the current invocation of the process is finished. In Verilog the nonblock

ing assignments take place when the enclosing process suspends at a delay statement such 

as an & (poaedsre . T h e  interaction is illustrated in Figure 6-4 where a nonblocking 

assignment occurs within a task but the task exits before the enclosing process, the i n i 

t i a l  block, suspends. The new value of 1 to be assigned to value at the end of the 

invocation is associated with the lexically enclosing block in which the assignment 

occurs. Yet when the task exits that lexical scope is exited. The signal value remains at 0 
instead of taking on the new value of 1.

ana;
end module;

i task T(Clk, VALUE); \ module M(Clk, VALUE);
\

 ̂ Input Clk; Input elk;
\ output VALUE; I output VALUE;
X 0(posedge Clk); \ initial begin

VALUE <■ 0; _T(Clk, VALUE);
9 (poBedge clk);
VALUE <- 1; 

endtask;

Figure 6-4. Interaction of a Verilog Task and Non-Blocking Assignment

6.2.2.3 Differences in Signal Assignment

On the same point, the non-blocking assignment of Verilog is subtly different than the 

VHDL signal assignment in the case where multiple non-blocking assignments occur in a 

time step. The semantics of the non-blocking assignment is defined as follows: the right- 

hand side of the assignment statement is evaluated and the value is scheduled for later 

update. However, if there is more than one non-blocking assignment to the signal in the 

time step then the value actually selected is nondeterministic. In contrast, such a case in

1. This example was pointed out to me by Gary York of Cadence Design Systems Inc.
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VHDL would always result in the last-assigned value being the value of the signal. For 

example, in Figure 6-5 shows two processes, one in Verilog and one in VHDL. The Ver

ilog example may result in either a 0 or a 1 on the signal OUT. In VHDL, the result is 

always 1. This underspecification was originally installed in the language definition to 

allow implementation freedom in simulator implementations. Recently though the pecu

liarity has been exploited in a proposal for a policy-of-use for describing nondeterministic 

computations in Verilog [49]. Declared nondeterminism is a powerful abstraction mecha

nism in verification.

Verilog VHDL
signal OUT: bit;
process 
begin

OUT <■ 0;
OUT <■ 1; 
wait; 

end process;

Figure 6-5. Verilog and VHDL Signal Assignment

6.2.2.4 Overriding Similarities

There are a number of differences between the two standardized HDLs over and above 

the superficial contrast between their respective syntactic styles. At the deepest semantic 

level however, Verilog and VHDL are fundamentally the same. They both are defined in 

terms of a core simulation cycle which executes processes in the event driven fashion. In 

fact it can be argued that the simulation cycle for both languages are the same with the 

admission that the VHDL cycle is possibly more concretely detailed at the language level. 

Indeed, the current industry trend towards mixed Verilog/VHDL simulators is another 

form of evidence that the two languages have the same fundamental semantics. As such it 

is sufficient, for the purposes of the semantic analysis attempted in this work, to speak of
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output OUT;
initial begin 

OUT <■ 0; 
OUT <■ 1; 

end;
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either Verilog or VHDL. For convenience, the remainder of this chapter describes only 

VHDL, its subsets and proposed extensions. The obvious analog in the case of Verilog can 

be inferred directly. It remains to establish where the standard HDLs fit in the semantic 

framework of the RMC Barrier Theorem and microsemantics.

6.2.3 Event-Driven Semantics

As stated, the discrete event model defines semantics through the manipulations per

formed on the simulator event queues. For the purposes here, the VHDL simulation cycle 

shown in Figure 6-2 can be used as a prototypical discrete event execution loop. In order 

to fit its semantics within the framework of the RMC Barrier Theorem and microseman

tics some analysis is necessary. In particular that simulation cycle, as stated, is purely 

operational being defined by (very) high-level pseudocode acting in an individual simula

tor state vector. What is necessary is a formulation of that simulation cycle in as an image 

semantics where sets of simulator state vectors are Q (c) transformed by a macrostep 

transition relation T (c ,i,o ,n ). That being done the analysis of the discrete event model 

in terms of the RMC Barrier Theorem and microsemantics will be fairly straightforward.

Fortunately almost all of the necessary analysis has already been performed in the 

example microsemantics of Example 4.3A6. That example, which actually is the original 

event-driven semantics of StateCharts [330], fits the situation at hand almost exactly. To 

use that result directly, it suffices to show that the simulation cycle of VHDL has the same 

attributes as Example 4.3.4.6. The results will then follow through directly. There are 

three salient attributes to that example. The first and most obvious is that the example has 

a has a three-level temporal structure with a macrotime, a 5 -time and a q-time. In con

trast. the traditional view is that VHDL has a two-level time with a macrotime and a 5- 

time. That VHDL has a three-level time in its relational p -calculus formulation must be 

shown.
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Secondly Rs holds in the example semantics. This means events emitted during the p- 

steps of 8t- do not become visible until 5/+ t . Though it is intuitively clear that this is the 

case in the VHDL simulation cycle, Rs must be shown in the context of the three-levels 

of time established previously.

Finally, the semantics of Example 4.3.4.6 is reactive. This means that signal emissions 

relate to the current macrostep instant not to future instants. In the example, this aspect is 

governed by Ex 4.3.4.6-I. The unrestricted semantics of VHDL is not reactive. This 

means that signal emissions created one macro instant can appear and affect future macro 

instants. To be reactive, the admissible programs must have the property that events con

sumed in a macro instant must have been produced in that macro instant, produced either 

by the system as a reaction in some 5 -step or spontaneously by the environment at the 

start of the macro instant. This condition can be violated when either inertial or transport 

delay is used. Therefore some limits must be established on the use the nontrivial delay 

operators in order to place the VHDL simulation cycle within the framework of the RMC 

Barrier Theorem.

After establishing these similarities and restrictions it is straightforward to show that the 

semantics defined by VHDL’s discrete event simulation cycle is RMC. By analogy the 

same result must hold for the simulation cycle of Verilog.

6.2.3.1 The Discrete-Event Model has a Three-Level Time

An examination of the VHDL simulation cycle shown in Figure 6-2 revealed the tradi

tional two-level time shown in Figure 6-3. That two-level view of VHDL semantics how

ever elided an important facet of the semantics: that within a 8 -step a set of processes 

were run in some order. With the understanding that every runnable process runs for only 

a finite number of steps, the computation produced by the resumption of a process can be 

exactly characterized via a transition relation. Let this transition relation be named .
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Elements of 7  relate the program state before the resumption of the process to the state 

after the invocation. In this light, the picture of the simulation cycle shown in Figure 6-3 

can then be rewritten to illustrate the resumptions of individual processes. There, the set of 

processes resumed in a 8 -step appear as t] -steps between the 8-steps.

Hi Ih Th Tl3 ’I I rl2 rl3 ^ 4 1 5  f n i H l

V l  82 53 T' S1 82 8 3 T, 5i

Figure 6-6. The Three-Levels of Time in VHDL Discrete Event Semantics

From this analysis and the depiction in Figure 6-3 it is clear that VHDL has a three-level 

structure of time with exactly the same structure as Example 4.3.4.6.

6.2.3.2 The Discrete Event Model is

The view of VHDL simulation shown in Figure 6-3 can be related to the five steps of 

the VHDL simulation cycle from Figure 6-2. The procedure described in step 1 governs 

the number of 8 -steps in the macrostep. In the middle are steps 2 and 3 which describe 

how the values on signals are updated for the next 8-step. The resumption of processes 

and their execution described in steps 4 and 5 clearly corresponds to the x\ -steps.

By analogy with Ex 4.3.4.6-L steps 2 and 3 that the outputs 0 { become defined after 

being emitted in the r\ -steps of the previous 8 -step. These two steps update the simulator 

state so that all the process resumption r|-steps compute against the same set of outputs. 

Thus R holds over 8 -steps. This condition is exactly the definition of the /?5 from Exam

ple 4.3.4.6 therefore the semantics of the discrete event model is /?5.
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62.33  The Synchronous Subset of the Discrete-Event Semantics

The major difference between the semantics of Example 4.3.4.6 and that supported by 

VHDL’s simulation cycle is the property of reactivity [498] wherein, at the macrostep 

level, outputs are produced only in response to inputs. Outputs do not occur spontaneously 

with respect to inputs. The example semantics is reactive whereas full VHDL allows for 

non-reactive programs. This is not particularly due to the simulation cycle per se, but 

rather to the ability of a running process to emit signals with nontrivial delay through the 

a £ t e r  delay modifier. The a f t e r  clause in a signal assignment allows a process to emit 

events which will occur in future macro instants.

A trivial example showing how nontrivial delay in signal emission produces non-reac

tive semantics is shown in Figure 6-7. In that case, the output O follows the input I when 

STOP is TRUE but freely oscillates when STOP is FALSE. The free oscillation in this sec

ond mode is non-reactive. This distinction between reactivity and non-reactivity was for

malized in Section 5.7.2 in the distinction between SL3 and SL4 .

entity INV_LOOP is
port(I: in bit; STOP: in bit;

O: out bit); 
end INV_LOOP;
architecture OOPS of INV_LOOP is 

signal INTERNAL: bit :■ 'O'; 
begin

with STOP select
INTERNAL <■ not INTERNAL after 10 ns when FALSE, 

I after 10 ns when TRUE;
O <■ INTERNAL; 

end OOPS;

Figure 6-7. An Example of a Non-Reactive VHDL Program
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The principle of reactivity requires that events produced in a macro instant must be 

causally traceable to an input event in that same instant. By extension, events consumed in 

the current instant must be produced in the current instant They may have been produced 

either by the environment or internally by another process. In VHDL this principle plays 

out in the context of the 5 -steps: the principle of reactivity requires that events consumed 

within a macrostep must be generated either on an input signal or within the macrostep but 

in a previous 8 -step. Specifically, this means that the use of inertial and transport delay, 

the two forms of nontrivial delay in VHDL, must be severely limited.

In any VHDL model there are three classes of signals. There are input signals which 

communicate events and values from the environment into the model, there are internal 

signals which transfer events and values among subparts of the design and there are output 

signals which communicate from inside the model to the environment. This classification 

of signals is illustrated in Figure 6-8. In general, the interconnection of the processes by 

internal signals can be arbitrary and in particular there may be feedback loops among the 

processes. The resolved signal kinds b u s  and r e g i s t e r  arc supported in the manner 

prescribed by the standard through what amounts to a distributed multiplexor arrange

ment. They naturally fall into this classification scheme. Too. without loss of generality 

one can assume that signals are either input or output but not both and that input signals 

are read-only while output signals are write-only.

These three classes of signals directly relate to the issue of reactivity and the minimal 

limits on the uses of nontrivial delay in a reactive VHDL model. The input signals are by 

definition read-only so signal assignment cannot occur on them. For this class of signal, 

nontrivial delay semantics is a non-issue. This leaves the use of internal signals and the 

output signals as the sites where reactivity must be established. In the case of internal sig

nals. reactivity requires that events consumed in the macrostep be produced either on an 

input signal or on an internal signal in a previous 8 -step of that same macrostep. This
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Inputs
signals internal signals ■

Outputs
signals

■ ■
a

m

Figure 6-8. The Classes of Signals in a VHDL Program

implies that reactivity is preserved only in case unit delay is used on internal signals. The 

use of either inertial delay or transport delay on these internal signals would essentially 

allow for spontaneously produced responses, thereby violating the reactivity property.

The case of output signals is a bit more subtle. Output signals cannot be read so events 

occurring on them are guaranteed never to cause any further 5 -steps within the instant. 

Thus from a semantic viewpoint it does not matter whether their emission is delayed in 

macrotime or it occurs in the same instant. From an external perspective therefore there is 

a subtle distinction between when an output signal is emitted and when it actually occurs. 

Signal emission is a notion that is relative to an internal view of the system whereas signal 

occurrence is one which is relative to an external or global view of the system. Signal 

emission is associated directly with the execution of the signal assignment statement. In 

contrast, signal occurrence is the macrostep point at which the value change registered by 

the signal assignment actually is observed externally.

The key insight for output signals in a reactive context is that from a semantic point of 

view nontrivial delay between their emission and occurrence is irrelevant. In a practical 

implementation, the environment might care about this delay, however since an output sig

nal cannot trigger further 5 -steps within the model, any nontrivial delay is transparent to
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cause-effect analysis. What is not transparent are two potential side features of delayed 

occurrence which must be constrained in order to preserve reactivity. The first is a poten

tial reordering of delayed reactions due to varying delays between reactions. The con

straints on delays in this regard are the same constraints established for the “Codesign” 

Finite State Machine (CFSM), presented in Example 4.3.4.5. In particular the constraints 

on reaction order shown in Figure 4-9 must be observed. The second constraint is the invi

olability of the connection between a signal emission and its occurrence. This is the issue 

of preemption, namely that a signal emission once executed entails the occurrence of the 

event; it cannot be preempted by subsequent signal emissions. Constraints in this regard 

were established for the CFSM as well. Preemption has also been investigated in the con

text of VHDL with the VHDL Annotation Language which is presented Section 6.3.1.

In the general case with arbitrary nontrivial delays, establishing the non-reordering or 

non-preemption properties can be quite difficult. It is definitely beyond the scope of the 

work here. A sufficient condition for reactivity is that internal and output signal assign

ments use only unit delay.

6.2.3.4 The Discrete-Event Semantics is RM C

With this background it is now possible to show that the semantics of VHDL is RMC. 

As with the analysis used in the examples of Section 4.3, the focus here is on what the dis

crete event semantics of VHDL can allow rather than what is a reasonable and proper use 

of that semantics.

Consider the properties of the example VHDL program shown in Figure 6-7. It has the 

interesting property that when an odd number is given at the input I then the output O 
becomes 1+6 at the end of the macrostep. When an even number is given at I then the 

program never finishes the end of the macrostep; it oscillates forever in 8 -time. These 

two scenarios are illustrated in Figure 6-10 and Figure 6-11 respectively. In those figures
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entity Weird ia
port (I: in integer; 0: out integer); 

end Weird;
architecture Ripple of Weird is

function Resolve(sourcesr in integer_vector) 
return integer; 

subtype resolved_integer is Resolve integer; 
signal iOt resolved_lnteger bus :■ -1; 
signal il, 12, 131 integer :* -1; 

begin

P0< 10 <- I;
PI: process 
begin

wait on 10;
1 1  <■ 10 + 2 ;  

end process;
P2: process 
begin

wait on 11;
1 2  <■ i l  + 2 ;  

end process;

end Ripple;

Figure 6-9. An VHDL Program Illustrating RMC Behavior 
the highlighted values indicate that the corresponding driving process was executed in the

8 -step and that the driven signal changed value. This example is interesting because it is

not an entirely unreasonable one. It also illustrates all three properties.

Signal Driver 7*0 «i 52 S3

to 55 s 6
I env t l 1 1 1 l 1
10 P0 1 1 I I 1 I
il PI -l -i 3 3 3 3 3
12 P2 -l -1 5 5 5 5
13 P3 -l -L -1 -1 7 7 7
O P4 -l -1 -1 -1 -1 7 7

Figure 6-10. The Execution of Figure 6-7 on an Odd-Valued Input
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P3: procsss
variable var: integer :■ 0; 

begin
wait on 12; 
var :■ 12 + 2; 
if 0 ■ var mod 2 then 

10 <■ var mod 8; 
else

13 <■ var; 
end if; 

end process;
P4: O <■ 13;
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Signal Driver To S i 5 2 S 3 S 4 S 6 S 7 S 8 S 9 S i o *U 5 12 »13 etc

I aav 0 0 0 0 0 0 0 0 0 0 0 0 0

10 PO -1 0 0 0 4 4 4 0 0 0 4 4 4

i l PI -I -1 2 2 2 6 6 6 2 2 2 6 6

12 P2 -I -1 -1 4 4 4 8 8 8 4 4 4 8

13 P3 -I -1 -L -1 -1 -I -1 -I -1 -1 -I -1 -I

O P4 -1 -1 -1 -I -I -L -L -I -1 -I -I -1 -L

Figure 6-11. The Execution of Figure 6-7 on an Even-Valued Input 

Responsiveness

Responsiveness requires that there exist at least one output which is dependent upon a 

particular input value. The example of Figure 6-10 shows one such example: 0 is 7 just 

when I is given as 1 at the start of the macrostep. The semantics of VHDL is R .

Modularity

Modularity requires that the execution of any one subpart of the design, take process PI 
for example, can be determined solely from the inputs and the outputs produced by all the 

other components. These would be processes P0, P2, P3 and P4. An consequence of this 

principle is that there can be but a single value for any output in a macrostep. The scenario 

of Figure 6-11 shows that the driven outputs of processes P0, PI and P2 are multi-valued 

and 6-step order dependent. The semantics of VHDL is therefore M.

Causality

Causality requires that there be a partial order relating inputs to outputs which exists at 

the component level and is also preserved at the aggregate level. In the example scenario 

of Figure 6-11 it can be observed by tracing across the 5 -steps that there is no partial 

order among the signals. For example, iO both causes il and is caused by il. In the for

ward direction, iO causes il directly in P0. In the reverse direction, il causes i2 in PI, 
i2 then causes iO in P2. Any system-level partial order would have both iO < il and
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i l  < iO . Yet because i l  and iO are distinct signals it is the case that iO * i l .  No 

causal partial order exists. The semantics of VHDL is C .

63 Beyond Discrete-Event Semantics

There are been several proposals to move beyond the discrete event basis of hardware 

description languages such as VHDL or Verilog. These efforts are predicated on the 

understanding that, for practical purposes, the discrete event semantics of these languages 

cannot be changed. The investment in them is simply too great to presume that a newly 

proposed language would have any hope of competing in the marketplace of ideas, let 

alone be commercially successful. So while language subsets may be admitted in this 

view, there is no place for a reinterpretation or redefinition of the standard. As an example, 

in the case of VHDL, the simulation cycle which must be used is defined by the standard 

and to change that definition even in minor ways changes invites the charge that the new 

operational definition constitutes a new language. To claim to support VHDL, the lan

guage must be treated as-is with the analysis scheme adapting to the task not vice versa. 

Two contrasting approaches to using standard VHDL in this vein are the annotation lan

guage approach of the VHDL Annotation Language and the Synchronous VHDL subset.

6.3.1 The Annotation Language Approach

The fundamental insight in the annotation approach is that a different denotation with 

desirable analytic properties can be associated with a discrete event model through the use 

of a carefully constructed annotation language. The trade-offs in such a scheme are the 

properties of the analytic domain itself and how the analytic domain is mapped down to 

the discrete event domain. In the case of the VHDL Annotation Language (VAL) [33] [34] 

[35], the analytical domain is the Waveform Algebra [31] where the denotations of VAL 

statements are interpreted as infinite waveforms on a discrete time line and the association 

to the RMC semantics of the VHDL model is declared by assertions and validated opera-
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tionally through simulation.

63.1.1 The VAL Semantics of Time

The VHDL language supports two sorts of macrotime delay models: inertial delay and 

transport delay. Both of these delay models have the property that they are preemptive. 

This refers to the effect of a signal assignment which destroys the previously-projected 

values planned for the future value of the signal. The preemptive effect of inertial and 

transport delay signal assignments are illustrated in Figure 6-12 and Figure 6-14 respec

tively. * In the preemptive semantics, events projected by one signal assignment operation 

are later canceled when more information is available. In contrast to the preemptive 

semantics of VHDL, the VAL timing model is called anticipatory because any event, once 

projected, is guaranteed to take place. The declaration of the event’s future existence 

anticipates its actual occurrence.

signal St integer :* 0;
Pit
process
begin

S <■ 1 after 1 ns, 3 after 3 ns, 5 after 5 ns; 
S <■ 4 after 4 ns; 

end process;

Driver of' S after statement #1
s- 1 1 ns 3 3 ns

t 3 after statement #2
4 4 ns

5 ns

Figure 6-12. The Preemptive Aspect of VHDL Inertial Delay

l. The figures are adapted from Lipsett et al. [478]. More detailed examples of preemption are given in 
Augustin et al. [35].
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To facilitate the declaration of event occurrences a new expression construct, the timing 

operator is introduced in VAL. It takes the form of an array-like temporal offset index on a 

value carrier such as a signal or state name: N M S E [ o f f s e t ] . Unlike VHDL where all 

references to time must be positive, thereby referencing points strictly in the future, the 

VAL timing operator can reference points either in the future or the past. An example 

declaring that STATE adopts the value of X in three nanoseconds under the condition that 

Y was true two nanoseconds ago is shown in Figure 6-13. *

when Y[-2 ns] then 
STATE <- X[3 ns]; 

end when;

Figure 6-13. A VAL Annotation Specifying a Buffer with Delay

The VAL language provides various statements for declaring constraints on behavior in 

this anticipatory fashion. There are statements such as when, illustrated above, and 

a e l e c t  which express the instantiation of conditional guards. The guards can be nested 

arbitrarily deeply with nesting interpreted in the obvious manner as the conjunction of the 

enclosing guard conditions. The drive statement, also illustrated above, declares the 

anticipatory state transition subject to the enclosing guards.

The effect of the VAL statements is the instantiation of guard conditions around drives 

statements. This describes state transitions predicated on the conditions of the guards and 

defines an abstraction of the VHDL model which has anticipatory semantics and is thus 

formally analyzable in terms of expressions in the Waveform Algebra. This analysis is 

accomplished outside of the scope of the annotation language.

1. Adapted from Augustin et al. [35], page 193.
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signal S: integer :■ 0;
P i t
process
begin

S <■ transport 1 after 1 ns,
3 after 3 ns, 5 after 5 ns; 

S <■ transport 4 after 4 ns; 
end process;

Driver of S after statement #1
s - 1 1 ns

I s after
1 1 ns

3 ns

3 ns

5 ns

4 ns

Figure 6-14. The Preemptive Aspect of VHDL Transport Delay

63.1.2 Mapping to the Discrete-Event Semantics

The VAL abstraction is associated with the underlying discrete event VHDL model by 

means of assertions which are said to map state transitions in the analysis domain to 

events occurring at the discrete event level. The validity of these assertions is established 

operationally by simulation runs. The claim is that if no assertion fails then the preemptive 

semantics of the discrete event execution is said to implement the anticipatory semantics 

of the VAL abstraction. The important aspect is that the mapping between the VAL 

abstraction and the VHDL model is established empirically through execution rather than 

formally through an analysis of the discrete event semantics.

Of interest here are the range of assertion types supported in the mapping part of the 

VAL language. The language designers chose to expose the 6 -time level of VHDL in 

assertion expressions in order to give finer control over the specified behavior. The four 

flavors of assertions and their effect are shown in Figure 6-15:1
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• the assert flavor is the same as the assert statement in VHDL.

• eventually enforces a monotonicity property within a macrostep that once the 
expression becomes true it remains so,

• finally enforces that the stated condition is true at the very last 5-step,

• sometimes enforces an existential property that the stated condition is true for at 
least one 5-step.

Macrotime Tf-i T Tl i+ I T1 i+2
5 -time 1 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4

Guard t t f f t t f t t f f t t f f t
Assertion t f f f t f f t t t f f f t t f
a s s e r t : - V - - - V - - - - - V V - - V
e v e n tu a l ly - V
f i n a l l y - - - - - - - - - - - V - - - V

som etim e - V

v - indicates violation of the assertion 

Figure 6-15. Violation Conditions for the VAL Assertion Flavors

The assertions and model declaration statements may be arbitrarily intermixed. An exam

ple of an annotated model is shown in Figure 6-16.1

6.3.2 The Synchronous VHDL Subset^

A second approach to establishing an analyzable subset of a discrete event based lan

guage starts from its RMC semantics and identifies a different semantics within the fully 

general one. As with many of the previously studied semantics, a per-system restriction is 

used to disallow descriptions that do not have the target property. This subset of the 

semantics can then be said to define a subset of the language. The language subset is

l. Adapted from Augustin et al. [35], Figure 3.5, page 56.
1. Adapted from Augustin et al. [351, page 92.
2. This section revisits the original presentation of Synchronous VHDL [47] and places that proposal in the 
framework of the RMC Barrier Theorem and microsemantics developed here.
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entity DFF is
generic (SETUP, HOLD, DELAY: TIME); 
port (Clk: in BIT; -- Clock input

D: in BIT; —  Data input
Q: out BIT; -- Output
Qbar: out BIT); —  and its complement

assume DELAY >■ HOLD
report "Error in generic constant"; 

state model is BIT; —  A single bit of memory
begin

when Clk'Changed('0 ’) then
when D'Stable during [-SETUP, HOLD] then 

D -> State[DELAY]; 
else

assert false report "SETUP-HOLD violation"; 
end when; 

end when;
finally (State ■ Q) and ((not State) » Qbar) 
report "State does not agree with output"; 

end DFF;

Figure 6-16. An Entity with VAL Annotations__
defined by the target subsemantics rather than vice versa. For the RMC semantics of dis

crete events, an obvious choice is a subsemantics that is M resulting in an RMC seman

tics as per the Synchronous Language semantics. Sublanguage identification in this 

manner is a fundamentally different approach than the analogical one used for the hard

ware semantics of Section 6.1.2.1.

The Synchronous VHDL [47] subset is defined in exactly this manner, arriving at an 

RMC semantics that fits within the RMC semantics of the full language. The key aspect 

is that the restriction on the semantics drives the restrictions on the allowable language 

constructs. The restricted semantics therefore defines a subset of the standard language 

which is synchronous thereby reestablishing the semantic foundation of the language 

away from its original discrete event basis but in a way which is guaranteed to be consis

tent with it. Such a proposal however does little to address conceptual omissions in the 

original language such as the potential confusion between state variables and output vari

ables or the lack of a hierarchical behavioral constructors analogous to the existing hierar-
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chical structural constructors of the i n s ta n c e  and the guarded b lo c k .  A proposal 

which specifically addresses this last deficiency is presented in Section 6.4.2.

The original development of Synchronous VHDL was undertaken as a proof of concept 

to determine if such a subset existed and whether such a semantics-defined language sub

set would be practicable, convenient and expressive enough for design description. These 

last judgements are ultimately as subjective as are all claims about language suitability. * 

With some lack of objectivity what can be described is the expressiveness and intuitive 

identification of legal programs. Synchronous VHDL is a highly restricted subset of a 

much richer computational model. Of interest to any user therefore is the ease with which 

admissible and inadmissible programs can be identified. Unfortunately, in practice, the 

subset is difficult to program to for reasons which are outlined in the ensuing sections. 

As the ensuing sections show, there is more than a little ambiguity surrounding how one 

might algorithmically check whether or not a given program instance is admissible in the 

synchronous subset. So while an RMC subset clearly exists, it is often difficult to deter

mine a priori whether a given program instance has this property. Section 6.3.2.5 summa

rizes these reasons in the form of lessons learned in semantics and language design.

63.2.1 The Modularity Conditions

The definition of Synchronous VHDL starts from the semantic level and moves forward 

to the syntactic level. At the semantic level, unrestricted VHDL was shown to be explicitly 

non-modular, as RM C , in Section 6.2.3. From this situation some per-system restrictions 

must be used to establish a modular subsemantics. This subsemantics would of course be 

RMC and once modularity is established then the theory of the Synchronous Languages 

can be applied. In particular the notions of causality and surpassing the RMC Barrier

l. Stoustrup's [672] introductory comments about language adoption being essentially a •‘life-style issue” 
are directly relevant in this regard.
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through per-system causality checks, whether they be static or dynamic checks, are 

directly applicable.

The primary focus in Synchronous VHDL therefore is on the set of conditions which 

establish M. The analysis in Section 6.2 showed that the reason VHDL is M is that, the 

three-level model of time in conjunction with Rs , allows signals to have multiple values 

in a macrostep. The M -establishing conditions must ensure that a single value is seen for 

all signals across all microsteps. The necessary conditions are:1

1. single assignment across all 8-steps in a macrostep,
2. no write after read across all 8-steps in a macrostep.

The first condition ensures that a signal does not take on more than one value in a 8-series 

by any explicit act. That is, by multiple assignment operations. The second criterion 

ensures that the rest of the system does not make a decision based on any but the single 

emitted value of a signal in a 8-step series. These conditions are necessary; they must 

always hold for any system to have the M property. A simpler but not fully general set of 

sufficient conditions is given in Section 6.3.2.4.

The restriction to system descriptions which has M  is one of the two per-system restric

tions imposed on arbitrary VHDL descriptions to define the Synchronous VHDL subset. 

The check that Af is obeyed is called modularity checking and is similar in spirit to the 

causality checking done in the Synchronous Languages. In that case, the RMC semantics 

does not guarantee causality, the semantics is C, so the compiler must check that the sys

tem instance has C. Here the RMC semantics does not guarantee modularity or causality 

so the compiler must check that the program instance has M  as well as C.

I. These necessary conditions, also called must conditions. and other more practical sufficient conditions, 
also called may conditions, were originally proposed by Gonthier [295] for the denotational semantics of 
Esterel.
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63.2.2 Differing Models of Time

The foregoing semantic constraints are relatively straightforward but they do not pro

vide an effective means of checking the admissibility of an arbitrary VHDL description in 

the synchronous subset Any practical modularity checking problem is complicated by the 

different models of time used in the two regimes. What must occur in a modularity check

ing procedure is the definition of a correspondence between the RMC interpretation of 

discrete events and the RMC interpretation of the synchronous semantics. This kind of 

correspondence is illustrated in Figure 6-17.

Full VHDL
*11*12*13 * i i * i 2 * H * i i * i 2 * i3 ■ *11*12*13. *11*12*13 *11*12*13 *11*12*13*14*15 | * i i * i 2  *11*12*13

x x
Figure 6-17. Extracting Synchronous Time from Discrete Event Time

There are three salient points in VHDL semantics which are relevant here. The first is 

that the three-level time of full VHDL is Rs . Secondly it can be noted that the forward and 

backward image computations F^{Q) and B^{Q} at the rj-time level are (trivially) 

monotonic in the information ordering. Finally, at the 5-level the computations FS{Q} 

and fi5 {Q } are not monotonic in this information ordering. In contrast the RMC synchro

nous semantics only has two levels and the forward and backward image computations
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F5{Q} and Bs {Q } are monotonic in the information ordering.

The major effect which distinguishes the discrete event semantics from the synchronous 

semantics is the R8 property of the discrete event semantics. In the discrete event world, 

the values seen on signals are the values assigned there from some previous 5-step. The 

R5 property implies that any new value assigned in step Bi does not take effect until step 

8{. + j. This means that even under a restriction to single assignment in a macrostep (condi

tion 1 in Section 6.3.2.1), that it is possible for a signal to be used with two different val

ues if it is read before it is written. This is the case when a signal is read in step 8i but is 

assigned in 5. and j  > i . This case is the reason for condition 2.

Operationally the effect of R8 on modularity is subtle. This is because the granularity of 

process invocation interacts with the prohibition against read-before-write across the rj- 

steps. Examining the VHDL simulation cycle shown in Figure 6-2, it can be observed that 

when a process becomes runnable, the process runs until it explicitly suspends because it 

executes a w a it  statement. * This suspension at a w a it statement may or may not be per

manent for the macrostep depending on whether the sensitivity condition of the w a it is 

triggered again in a subsequent 5-step of the macrostep. In contrast, in the synchronous 

semantics there is no explicit notion of intra-macrostep suspension. Instead, Gonthier's 

principle of causal execution provides an implicit form of synchronization through the 

requirement that a signal can only be read after it is written in the macrostep.2

I. Without loss of generality, this presentation as the earlier presentation of Synchronous VHDL [47] 
assumes that the VHDL description has been reduced down to the core language. The presumed level of 
description is a control-dominated coordination scheme of communicating processes. For any semantic 
analysis, it is sufficient to examine the properties of the core language alone.
The core language consists of a flat network of processes each with one or more explicit w a.lt statements. 
Other aspects of the language such as concurrent statements, concurrent signal assignments (the so-called 
“dataflow" sublanguage), or processes with static sensitivity lists can all be expressed in terms of the core 
language. The core language is described in Section 9 o f the VHDL ‘87 [384] or VHDL *93 [387] standards 
documents.
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63.23  An Examples of Differences and Correspondences 

Differences

The example shown in Figure 6-18 is a VHDL entity containing two processes PI and 

P2. The presumption is that the process PI is invoked by some event on the input signal 

M. The execution profile of this system in this situation is shown in Figure 6-19 under the 

two different semantics. The execution profile gives a trace of the model’s execution at the 

statement-level. This highlights the granularity of the r]-steps and the 5 -steps.

entity E is
port(Ms in bit);

The RMC discrete event semantics of VHDL are shown on the top bar of the figure. 

There, a non-modular condition occurs on R which has two different values across the sin

gle-5 macrostep. In the RMC case the macrostep consists of 5j alone. At the start of 5L 

the value of R is '  1 '  because that is the value declared in the signal initializer. This is also 

the value on the signal in rj t and r)2. However, at the end of the macrostep, after p2 is 

complete, the value becomes '  0 ’ . In particular in r |} when PI is executing at statement

2. Specifically, Gonthier [295], part III. In the practical implementation of that theory a simplification is 
made which postpones reads until after there is no potential to execute a write on the signal. This is an 
instance of a state-insensitive may computation is substituted for a state-specific must computation.

and E
signal Q, R: bit :■

Pit P2:
process process

variable b: bit :■ 'O'; variable Zt integer :■ 1;

(?) Z : ■ next (Z) ;
else

else
(*) b :■ 0; end if;

(T) - - - other stuff ...end if;
end process PI; end process P2;

Figure 6-18. An Example of the Effect of Rs in VHDL
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(a), the value read for R is '1' which explains why the next statement executed is C D .  

Later in the trace the value '  0 '  is assigned to R at (D  in P2 and this value becomes the 

final value of R at the end of 51 and for the macrostep.

RMC

Time

RMC

« —
M ” 2
PI PI PI Pi P2 P2 P2 P2 Process

1 2 3 w 1 2 4 w Statement

Si 52 S3 S4 s 5 S6 S7 Ss Time

PI P2 P2 P2 P2 PI PI PI Process

I I 2 4 w 2 4 w Statement

Figure 6-19. Execution where RMC and RMC Semantics Differ

The trace profile of the VHDL under RMC semantics is shown in the lower frame of 

Figure 6-19. That case is subtly different because there is no explicit intra-macrostep sus

pension operation. Instead the semantics enforces synchronization internally by requiring 

that any statement which uses the value of a signal must execute after the value of the sig

nal has been assigned. Operationally this means that a process runs until it cannot progress 

due to the lack of information. This is in contrast to VHDL’s execution rule which runs a 

process until an explicit suspension statement is executed.

Synchronous VHDL defines the subset of the language where the RMC subsemantics 

is consistent with the original RMC semantics. The two frames of Figure 6-19 differ, 

therefore the example of Figure 6-18 is not part of the Synchronous VHDL subset. This is 

because the discrete event interpretation of the program exhibits non-modularity which is 

not exhibited in the synchronous interpretation. The differences between the two frames 

of Figure 6-19 illustrate two issues that be dealt with in the definition of Synchronous 

VHDL. The first is that R8 in the general case causes M  at the macrostep level. The sec

ond is that even when both conditions 1 and 2 from Section 6.3.2.1 hold, the execution
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granularity of the explicit suspension mode prevents the occurrence of the implicit context 

switches that occur in the synchronous semantics.

Correspondences

The example of Figure 6-18 can be modified so that it is M  and therefore is a part of the 

Synchronous VHDL subset. That modification is the introduction of an explicit synchro

nization operation in the form of a w a i t  statement which is sensitive to an internally- 

driven signal, Q2. The modified example is shown in Figure 6-18. With this slight mod-

f'Addition of "\
Synchronization ^

entity E is
port(M: in bit); 

end E;

signal Q, Q2, R: bit :*

Pis
process ,

variable b : bit! ‘ 1 •; 
begin /

wait on H; ^
0 <» b; r
wait on Q2; : 
if R than.

b :■ 1; 
else

(T) b :* 0; 
end if; 

end process PI;

P2:
process

variable Z: integer 
begin 

w) wait on Q
30 if Z then
D  R <■ 'O'i

else
C D  Z :■ next(Z);

end if; xQ2 <* not Q2;
... other stuff ... 

end process P2;

l ;

Figure 6-20. A Subtle Modification of Figure 6-18 to Avoid M

ification. the execution trace for the RMC  interpretation and the RMC interpretation 

coincide.

63.2.4 Modularity Checking

There are two ways to approach the modularity checking problem. The first is to estab

lish, by examination, that the necessary conditions for modularity hold for all possible 

execution traces of the program. This is the fully general approach but has the disadvan-
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RMC

£ ► Time2 ►
T1 ^ n ► nM l  m M l  ^
PI PI PI PI P2 P2 P2 PI PI PI Process

1 X L 2 e 4 w 2 4 w Statement

St s 2 S3 S 4 s 5 S 6 S7 Ss 8 9 8 l 0 Time

RMC Pi P2 P2 P2 P2 PI PI PI PI PI Process

i X I 2 c 4 w 2 4 w Statement

Figure 6-21. Execution where RMC and RMC Semantics Match

tage that it requires showing that modularity holds for all possible executions. This may 

require a prohibitive amount of analysis. A second approach adopts the view that there 

exists a reasonable set of sufficient conditions which guarantee that the program is modu

lar. In particular the sufficient conditions are evaluated relative to their expressiveness and 

the analysis effort required by them.

General Modularity Checking

In the general case, the necessary conditions for modularity in discrete event semantics 

must be established for all feasible executions of the program. The modularity check must 

address the two necessary features for modularity. Unless otherwise restricted. VHDL 

allows within a single macrostep,

1. signals to be multiply emitted with distinct values,

2. any signal to be read before being written.

A general modularity check is a dynamic analysis which verifies that neither of these situ

ations occur in any macrostep transition. The general case therefore entails a sort of reach

ability analysis to establish M  in every transition from every state Q in the reachable state 

space of the model. Exactly this sort of dynamic checking is used in Esterel to establish 

C. There, the existence of the state-dependent partial order <Q, or at least conservative 

approximation to it [295], is established for every reachable state Q . In fact, for the partic

ular sort of non-modularity found in VHDL’s discrete event semantics, any algorithm
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which establishes C also establishes M  as a side effect

That VHDL’s M property is related to its C property is intuitive but not entirely obvi

ous. The relationship between M  and C in discrete events can be readily seen from an 

analysis of two cases which address conditions 1 and 2 of the necessary conditions for M 

from Section 6.2.3.1. The first addresses condition 1 and is an analysis of how C was 

established in Section 6.2.3.4. In the example of that section, a situation was constructed 

in a valid VHDL program where certain signals had multiple emissions in the macrostep. 

The case of, Figure 6-11 showed the signals iO, i l ,  and 12 having an infinite number of 

emissions in a macrostep. This meant that any potential partial order <Q would have to 

obey the following relationship: iO <q 11 <Q i 2  <Q iO for every state Q. This relation

ship is cyclic for any state Q so <q is never a partial order and the description is M . This 

situation illustrates how multiple output emission in a macrostep introduces cycles in <q 

and prevents it from being a partial order. It offers the opportunity that causality analysis 

might be used to identify violations of condition I: a modular description cannot have 

multiple emissions in a macrostep and neither can a causal description, though for subtly 

different reasons.

The second case addresses condition 2 which ensures that every signal has a single 

value across the macrostep by preventing any read preceding a write. A VHDL program 

where a read occurs before a write was shown in Figure 6-18 with the specific scenario 

being the RMC trace shown in Figure 6-19. In that case the discrete event semantics 

forces the signal R to be read in step ri, of 8{ though it is also written in r j ,. This leaves 

R with a different value at the end of the macrostep than was observed at ri t . Letting the 

state Qw be the state of the system at the start of that trace, with P I  at its ®  and P2 at its 

®  as well. The chain of dependency in the trace runs from the read of signal R at (D  of 

P I  to the write of R at ©  of P2. This is denoted as P I . 1 <Q P2 .2 .  However, condition 

2 of modularity requires that the read on R occur after the write which is denoted
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P 2 .2  < Q P l . l .

The presentation of a compilation procedure that effects these modularity checks is 

deferred until Section 7.2. Some of the not insubstantial difficulties involved with apply

ing that method to VHDL are described in Section 6.3.2.5.

A Sufficient Condition for Modularity

A specific case where modularity is clearly preserved is the case where each process is 

run at most once in the macrostep. In that case any non-resolved signal can be defined at 

most once when its driving process is invoked. All that is required is a further condition 

which prevents the not-yet-driven signal from being read. Though complex to describe in 

the abstract, the situation is actually quite simple and extremely common. The syntactic 

conditions which must hold are:

1. all processes have a fixed sensitivity list,

2. there are no cycles in the communication graph among the processes.

Such a situation is illustrated in Figure 6-22. That case is obviously a contrived example

which is almost combinational but clearly exhibits sequential behavior because the value 

on the output 0 depends on the number of times the inputs A, B, C or D have changed. In 

fact, a description of combinational logic is a special case of this class of program because 

logic networks are by definition acyclic. Thus (acyclic) descriptions in the dataflow sub

set of VHDL fall into this category as well. In these cases, modularity can be determined 

from a structural examination of the network and there is no need for any deep semantic 

analysis.

6.3.2.5 Lessons Learned

From this study which identifies a synchronous subset of VHDL’s discrete event seman

tics, several observations about the interaction between language features and semantics 

can be drawn. These observations offer both insight into why Synchronous VHDL is
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entity E is
port(A, B, C, 0: in bit 

O: out bit);
and E;
architecture A of E is 

signal il, 12: bit; 
begin

PI:
process
begin

P2:
process
begin

il <■ A or B; 
wait on A, B; 
il <■ A and B

12 <■ C xor D; 
wait on C, D; 
12 <■ C nand D

wait on A, B; 
end process PI;

wait on C, D; 
end process P2;

P3: O <■ il ■ 12
end A,

Figure 6-22. A VHDL Program where Modularity Checking is Simple 
indeed somewhat of a stretch as well as prefiguring some of the language evolution pro

posals reviewed in Section 6.4.

Granularity of Execution

Operationally, VHDL’s granularity of process execution under its RMC semantics is 

distinctly different than that of Esterel’s synchronous RMC semantics. In particular, the 

discrete event semantics has an explicit suspension operator in the w a i t  instruction. This 

contributes to the M  aspect of the discrete event semantics. In contrast, the synchronous 

semantics has a notion of implicit suspension under which a process suspends, within a 

macrostep, until the values that it requires become available. A case where explicit and 

implicit suspension semantics differ is the case shown in Figure 6-18. The salient aspect 

of that example is that the first process, process P I ,  “overcommits” and reads a signal, 

signal R in the example, before that signal is assigned in the macrostep. This operational
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“overcommit” behavior is a heavy contributor to the M  -ness of VHDL and additionally 

makes it difficult to write synchronous programs in VHDL; witness the subtle analysis 

needed to identify the synchronization needed to convert the M  example of Figure 6-18 to 

the M  example shown in Figure 6-21.

VHDL Event versus Transaction

One issue which has not been explicitly presented here^ but which has been present in

the whole analysis of VHDL’s discrete event semantics is the subtle distinction between

the event and the transaction. In VHDL an event is a change in value on a signal whereas

a transaction corresponds to merely a signal assignment independent of whether that

assignment changes the value. From the VHDL Language Reference Manual glossary of

terms, event is defined as.

Event. An event is said to occur on a signal when the current value of the 
signal changes as a result of the updating of that signal with its effective 
value. (Section 12.6.1)

In contrast, a transaction is said to occur on a signal whenever its driver becomes active.

and the activity of a signal driver is governed by the execution of signal assignments

against the driven^

Active Driver. A driver is said to be active during a simulation cycle in 
which it acquires a new value, regardless of whether the new value is dif
ferent from the previous value. (Section 12.6.1)

A trivial example illustrating this distinction is shown in Figure 6-23. Every Clockl the 

value of OUT toggles, every Clock2 the value of OUT is reset to 'O', when Clockl and 

Clock2 occur together the result is determined by the bus resolution function for 

ResolvedBit (not shown). The signal OUT has an event on it under Clockl if and 

only if its value is different than the value that had been previously assigned to it.

1. The distinction between event and transaction has also been investigated in previous work [471.
2. From Appendix B of IEEE Std 1076-1987 [384], page B-5.
3. From Appendix B of IEEE Std 1076-1987 [3841, page B-l.

311

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

entity E is
port(OUT: out RasolvadBit;

Clockl, Clock2s in Bit);
and E;
architecture A of E is 
begin

process
variable value: bit :■ 'O'; 

begin
wait on Clockl;
OUT <■ value; 
value :■ not value; 

end process;
end A;

Figure 6-23. An Example Distinguishing the Event and the Transaction 

In the context of discrete event simulation, the distinction between event and transaction 

is important for implementation reasons in simulators. The notion of event as a change in 

value reflects the preoccupation, in simulation, with damping out repeated computations. 

This is purely a performance issue. Clearly if a signal assignment is made which does not 

change the signal’s value there is no need to recompute and ripple the (non-)change 

through the process network.

In contrast, the use of the event abstraction in semantic analysis is highly problematic 

because it obfuscates the information ordering on the signal value domains. In Scott’s the

ory of computable functions, the execution of microsteps represents the progressive 

refinement of an approximation to the information defined in the macrostep transition 

relation. A signal assignment which does cause an event corresponds to an indication that 

a better approximation of the information for the microstep can be attained through the 

execution of more microsteps. An assignment which does not cause an event corresponds 

to having reaching a fixed point in this approximation. This means that the information 

ordering fixed point for a macrostep is path-dependent in addition to being dependent on
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process
variable value t bit :■ 'O'; 

begin
wait on Clock2;
OUT <■ 'O'; 

end process;
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the system state at the start of the microstep. In short, while Scott’s theory of computable 

functions states that a minimum fixed point which is constructible by successive approxi

mations necessarily exists for any finitely computable function, exactly what that informa

tion ordering relationship actually is in a discrete event semantics is entirely non-obvious.

An obvious and much more reasonable information ordering and macrostep approxima

tion scheme is one which is tied directly to the output assignment operator. This is the 

notion of assignment introduced for the synchronous semantics of Example 4.3.4.4, 

namely that in a macrostep, the output emission operator directly affects the information 

content of a value carrier: before an output has been assigned, the signal is undefined, after 

the signal has been assigned it is present, when it is never assigned in the macrostep then it 

is absent. The synchronous semantics’ output assignment always defines information, 

there can be no duplicate definitions in a macrostep, and a value can be consumed only 

once it is not undefined. Unfortunately this definition coincides with VHDL’s notion of 

transaction rather than event.

The Subtleties of the 5 -time Model

Intimately associated with the distinction between event and transition are the subdeties 

of the 5-time model. These differences were presented in Section 6.3.2.2 and can be char

acterized in a number of different though related ways. There, the time model of discrete 

events was characterized as having three levels with a macrodme, a 5 -dme and a r| -dme. 

Between the three different levels drastically different relationships pertaining to how 

multiple lower-level transitions were aggregated into the upper-level step held. In particu

lar, the n -time level induced Rs yet R held at the macrotime level. When examined from 

the perspective of the image computations the difference appeared as F {Q} and B^{Q] 

being (trivially) monotonic because of Rs , while the same could not be said of the 

microstep image computations FS{Q} and B^{Q}.
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States versus Outputs

Moving from the semantic attributes of Synchronous VHDL upwards to the language 

level, some comments on design description style can be offered. One of the most com

mon situations which arise in the use of the Synchronous VHDL subset is the desire and 

the need to confuse the internal state of a process with its outputs. It is many times conve

nient in VHDL to treat a signal driven by a process as an output of that process. However, 

since it is also possible, courtesy of Rs , to read the value of such a signal in the same mac

rostep where it written it is convenient to write descriptions which are M.  This leads to a 

confusion in the mind of the programmer between whether a signal is truly an output and 

whether a signal is actually an implicit state variable of a process. In an M semantics, 

output by definition cannot hold state across the macrostep boundary. Yet VHDL’s Rs 

property allows such state to be held and thereby induces M.  The example of Figure 6-24 

illustrates this condition with two possible implementations of an oscillator, one which is 

M and one which is M .

entity Oscillate Is
port(Clock: In bit; OUT: lnout bit); 

end Oscillate;

architecture DES of Oscillate is architecture SYNC of Oscillate is
begin begin

process process
begin variable value: bit;

wait on Clock; begin
OUT <* not OUT; wait on Clock;

end process; OUT <■ value;
end DES; value :« not value;

end process; 
end SYNC;

Figure 6-24. An Example of the Confusion of State and Output

The architecture DES offers a natural implementation of the oscillator under a discrete 

event semantics. In that case the signal OUT is both the carrier for the output of the oscilla-
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tor and at the same time the state variable remembering the phase of the oscillator. The 

example is not M because the signal OUT is read before it is written in each macrostep; 

OUT necessarily has two values in the macrostep. In contrast the architecture SYNC main

tains the phase of the oscillator separately and distinctly from the output.

The Rat versus Nested Process Model

Finally, there is one language level attribute missing from VHDL which is absolutely 

crucial in practical situations. VHDL describes systems in terms of a flat network of pro

cesses interconnected by signals which are interpreted as the outputs of their driving pro

cesses. One can view the language as consisting of two separable parts: the structural 

composition constructs and the individual processes themselves. The structural composi

tion aspects don’t contribute to the semantics, rather it is the networks of processes which 

are actually operated upon by simulators.

Processes under this view, are for practical purposes, finite state and the system descrip

tion is a network of communicating finite state processes. While the communicating 

finite-state process model is a general enough describe any finite state system, it is not 

convenient for programmers. In particular, while a structural unit can contain other struc

tural units in an arbitrarily deep hierarchy, the behavioral unit, the process, is atomic. * 

What would be convenient is the ability to arbitrarily nest structural and behavioral com

ponents and to have behavioral components which govern more than one thread of con

trol. Such capabilities exist in the synchronous language Esterel with its nested process 

model or in the discrete event language StateCharts with its nested states. There is yet no 

officially-sanctioned extension to VHDL which supports these features.

I. This had been previously observed by Narayan et al. [555] and has since formed the basis for the Spec- 
Charts extension to VHDL.
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6.4 Extending the Standards

There have been other attempts at extending the discrete event languages to make them 

more amenable to various uses. These are cases of language evolution as described in Sec

tion 6.1. They do not however represent unmitigated progress in the sense that the pro

posed changes make for a better semantic definition of the language. The two cases 

described here are the recent revision of the VHDL standard, and the SpecCharts proposal 

for a hierarchical behavioral construct in the flat process model of VHDL.

6.4.1 VHDL ‘93

From the perspective of this work the new VHDL standard, VHDL ‘93 * [3871, does not 

represent a positive advance in the evolution of the language. The changes to the language 

involved some modifications to the original standard [384] as well as some new capabili

ties. The modifications involved the clarification and resolution of various inconsistencies 

and ambiguities which had been observed in the original standard [3851 [3861. The new 

capabilities added include groups, shared variables, hierarchical path-names and the abil

ity to define foreign-language models (e.g. compiled from C), shift and rotate operators 

and an enhanced inertial delay modifier. As well, the standard document itself was recast 

to highlight the structure of the language itself in terms of a static design hierarchy aspect 

and a dynamic execution aspect which was further distinguished into a core language and 

syntactic conveniences defined in terms of this core. The increased emphasis on the core 

language made the standard more concrete as well as clarified the orthogonality of the 

many kinds of declarations and statements in the language.

The clarifications to the dynamic aspect of the original standard are substantially trans

parent relative to the semantic theory developed in this work. The same can be said of the

I. The name VHDL ‘93 is used here as that is the date-modifier adopted by the IEEE in the name of the new 
revision of the standard: IEEE Std 1076-1993. This revision is also variously referred to as VHDL 92 as 
1992 was the original target date for the first five-year revision of IEEE Std 1076-1987 [3841.
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new extensions designed to support design hierarchy compilation and management. What 

is of interest are some of the new behavioral constructs. These are significant because they 

provide new capabilities that must either be incorporated into existing language subset 

definitions or be found to be incompatible with non-simulation uses of the VHDL lan

guage such as synthesis and formal verification. Fortunately there are only a few of these 

and their definition and effect can be dealt with succinctly.

6.4.1.1 The Unaffected Waveform Constant

A new waveform constant unaffected has been added. The waveform causes the 

driver of the signal to be unchanged rather than disconnected. This makes the unaf
fected waveform different than the null waveform which does cause a driver discon

nect. An example of this waveform is shown in Figure 6-25.1

S <■ unaffected when Input_pin * S' DrivingValue else 
Input_pin after Buffer_Delay;

Figure 6-25. An Example of the unaffected Waveform

The unaffected waveform constant is designed to allow for more efficient simula

tion. The basic idea is that unaffected indicates that no change should occur on the 

signal driver in that case. The new constant is necessary because in the dataflow style 

there is no other way to express the lack of an assignment.

6.4.1.2 Pure and Impure Functions

A formalization of the notion of pure and impure functions was introduced in the 

revised standard. Whereas the original standard required that all functions be pure, the 

revised standard allows for functions that have side-effects. Usage restrictions are defined 

so that impure functions cannot be used where a pure function is expected. In particular an

l. From IEEE Std 1076-1993 [3871. page 133.
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impure function cannot be used as a bus resolution function.

6.4.13 Pulse-Width Rejection Inertial Delay

A new modifier for inertial delay signal assignment was added which allows for a spec

ified pulse rejection width to be used in the signal assignment. This allows for a contin

uum of delay models to be defined ranging from transport delay on the one extreme to 

inertial delay on the other extreme. The example shown in Figure 6-261 illustrates how 

transport delay and inertial delay from VHDL ‘87 are but instances of the more general 

pulse-width rejection delay. Any policy for VHDL use that proscribed the old inertial and 

transport delay constructs would necessarily prohibit the use of the more general pulse- 

width rejection delay.

—  Assignments using inertial delay
-- The following three assignments are equivalent to each other t
Output_pin <■ Input_pin after 10 ns;
Output_pin <■ inertial Input_pin after 10 ns;
Output_pin <■ reject 10 ns inertial Xnput_pin after 10 ns;
—  Assignments with a pulae rejection limit less 

than the time expression
Output_pin <■ reject 5 ns inertial Input_pin after 10 ns;
Output_pin <■ reject 5 ns inertial Input_pin after 10 ns,

not Input_pin after 20 ns;
—  Assignments using transport delay
Output_pin <■ transport Input_pin after 10 ns;
Output_pin <» transport Input_pin after 10 ns,

not Input_pin after 20 ns;
—  Their equivalent assignments
Output_pin <* reject 0 ns inertial Input_pin after 10 ns;
Output_pin <■ reject 0 ns inertial Input_pin after 10 ns,

not Input_pin after 20 ns;

Figure 6-26. Examples of the “Pulse-Width Rejection” Inertial Delay

l. From IEEE Std 1076-1993 [387], page 116.

318

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

6.4.1.4 Shared Variables

In the original standard, VHDL ‘87, the only vehicle for inter-process communication 

was the signal. In VHDL ‘93 it is possible to transmit information from one process to 

another by means of a shared variable. The variable is typically declared at the level of 

the architecture and is then read and written by more than one process. There are very few 

restrictions on their use:1

More than one process may access a given shared variable; however if 
more than one process accesses a given shared variable during the same 
simulation cycle (see 12.6.4), neither the value of the shared variable after 
the access nor the value read from the shared variable is defined by the lan
guage. A description is erroneous if it depends on whether or how an 
implementation sequentializes access to shared variables.

The example shown in Figure 6-27 illustrates how ill-defined the semantics of shared 

variables are, relative to the standard (consider when PROC2 runs before PROC1 in the 

first 8 -step).

Shared variables are clearly designed for high-performance simulation where the per

ceived cost of inter-process communication through signals is considered prohibitive. 

Alternatively they may find application in modeling situations where the partition of the 

description into processes and signals is at best forced. In either case, the expected appli

cation is clearly in the simulation and modeling arena and not that of the specification for

synthesis or formal verification.

6.4.1.5 The Postponed Process Class

In VHDL ‘87, all processes were of the same class in that any process was runnable 

whenever the signals on its sensitivity list had events. There was a need however for a sec

ond class of processes which were guaranteed to be run only after all other processes had

1. From IEEE Std 1076-1993 [387], page 56.
2. From IEEE Std 1076-1993 [387], page 57.
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architecture UeeSharedVariablee of SomeBntity is 
eubtype Short Range is INTEGER range 0 to 1; 
shared variable Counter* ShortRange i■ 0; 

begin
PROC1: process 
begin

Counter :■ Counter + 1; —  the subtype check nay fall 
wait; 

end process PROC1;
PROC2: process 
begin

Counter : ■ Counter - 1; —  the subtype check may fail 
wait; 

end process PROC2 
end architecture UseSharedVariables;

Figure 6-27. The Nondeterminism of a Shared Variable 
been run. The requirement in modeling was to ensure that some processes only saw the

stable values on signals. In VHDL ‘93 this second class of processes is called postponed

processes. A postponed processes is run only after the last 8 -step of the macrostep.

Syntactically, a postponed process is indicated with the postponed keyword which 

can decorate both the process construct itself as well as the concurrent variants of sig

nal assignments, procedure invocations and assertions. In allowing arbitrary activity to be 

deferred to the end of the macrostep, the postponed process generalizes the f i n a l l y  

assertion of VAL.

Other than being executed at a different stage of the simulation, the semantics of the 

postponed process is exactly that of the non-postponed variety. The deferred execution is 

the supported by an extended definition of the original simulation cycle. ̂  The new VHDL 

‘93 simulation cycle is shown in Figure 6-28.^ That six-part definition extends the original

1. From IEEE Std 1076-1987 [384], Section 12.6.3. page 12-13.
2. From IEEE Std 1076-1993 [387], Section 12.6.4, page 169.
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simulation cycle definition with the addition of Step (g). That step runs the postponed pro

cesses which have become activated during the previous delta steps.

A simulation cycle consists of the following steps:

a) The current time Tc is set equal to Tn. Simulation is complete 
when Tn = TIME1 HIGH  and there are no active drivers or pro
cess resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may 
occur on signals as a result).

c) Each implicit signal in the model is updated. (Events may occur on 
signals as a result)

d) For each process P , if P is currently sensitive to a signal 5 and if 
an event has occurred on S in this simulation cycle, then P 
resumes.

e) Each non-postponed process that has resumed in the current simu
lation cycle is executed until it suspends.

0 The time of the next simulation cycle, Tn, is determined by setting
it to the earliest of

1. TIME‘HIGH ,

2. The next time at which a driver becomes active or,

3. The next time at which a process resumes.

If Tn = Tc , then the next simulation cycle (if any) will be a delta 
cycle.

g) If the next simulation cycle will be a delta cycle, the remainder of
this step is skipped. Otherwise each postponed process that has 
resumed but has not been executed since its last resumption is exe
cuted until it suspends. Then Tn is recalculated according to the 
rules of step f. It is an error of the execution of any postponed pro
cess causes a delta cycle to occur immediately after the current sim
ulation cycle.

Figure 6-28. The VHDL ‘93 Simulation Cycle

6.4.1.6 Conclusions

The previous five examples highlight the semantic additions in the new standard. They
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illustrate how the new revisions have fixed discrete event semantics of the language even 

more tightly to the simulation cycle. In short, these additions show that while the language 

has evolved, it has not progressed in the sense of being more semantically reasonable. In 

fact, the previous five examples show that little has been done to reorient VHDL towards 

something which can be interpreted as a specification. Of the specification-oriented prob

lems in VHDL, that the semantics is RMC still exists as does lack of a hierarchical behav

ioral primitive.

6.4.2 SpecCharts

A proposal that does address the lack of a hierarchical behavioral construct in VHDL is 

the SpecCharts of Gajski. Gong, Narayan and Vahid.1 The SpecCharts are a synthesis of 

the graphical state-based description formalism of Harel’s StateCharts [3301 [3311 with 

the programmatic sequential code-fragment description of behavior found in VHDL.

At a primary level the SpecCharts formalism allows for the attribution of the hierarchi

cal states of StateCharts with program fragments defined in the VHDL language. At a 

deeper level however, the proposal goes beyond that in giving material (that is textual) 

form to the graphical formalism and thereby addressing the problem of VHDL's lack of a 

hierarchical behavioral construct. Additionally, the method by which the new syntactic 

structures are grafted onto the existing standard language offers some insights both into 

the ways in which new language features can be tested experimentally using existing 

implementations as well as into the subtle constraining effects imposed by microstep 

semantics on these exploratory ventures.

1. The SpecCharts have evolved substantially since their first publication [552] [553] [696] [697] [554] 
[555]. The presentation here draws from more recent work [275] [277] which has produced the textual rep
resentation of the language as well as formalized the semantic model underneath the mixed textual-graphi
cal notation.
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6.4.2.1 The Program State Machine Model

The model of computation in standard VHDL consists of a flat space of processes inter

connected by signals. Within a process there is only one sort of behavioral description: 

sequential code. External to processes there is no way for one process to exert control over 

another process except by emitting a value on a signal: there is no notion of one process 

completing and causing another sibling to start or of one parent process “aborting” its 

children based on some watched-for condition. The SpecCharts are based on a computa

tional model which provides all of these features. The authors call this model the Pro

grammatic State Machine (PSM).

Figure 6-28. The AND and OR States of a StateChart

A PSM is made up of two components, a hierarchical concurrent finite state machine 

(HCFSM) and fragments of a sequential programming language. The HCFSM formalism 

is simply a generalization of the StateCharts notation with its hierarchical states. Within 

the hierarchy the levels are either be “or” levels indicating that the HCFSM state is the dis-
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junction of the states at that level, alternatively the level can be an “and” level indicating 

that the HCFSM state is the conjunction of the states at that level. The example of Figure 

6-28 * illustrates such a decomposition: the state U is an “and” level consisting of S and T, 
the state T is an “or” level consisting of X or Y or z. The incremental contribution of the 

PSM over the original HCFSM is the addition of program fragments in the states. This 

gives a formalism in the style of Figure 6-29^ that associates code fragments with the 

states.

Answer rising(hangup)

( PlayAnnouncementq) ^ ^ R ec o rd in g ^  ^ ^H an g u p * }—̂ *

button=“u)0I button="000r

RemoteOperation

bahavior PlayAnnouncamant typ« coda is 
bagin

ann_play <• '1';
wait until ann_dona ■ '1';
ann_play <■ * o';

and;

bahavior RacordXag typa coda is 
bagin

ProdncaBaapd a); 
if (hangup ■ '0') than 

tapa_rac <• 1;
wait until hangup - *1' for 100 a; 
ProducaBuap(1 a); 
num_mags <• numjnaga + 1; 
tapa.rac <■ 'O'; 

and if;
and;

Figure 6-29. SpecCharts adds Program Fragments to StateCharts

In a PSM, the code fragments can be associated with any state, even hierarchical states. 

There are therefore two possibilities for when a state transition can occur in a PSM. The

1. Adapted from Harel et al. [334], Figure 6, page 407.
2. Adapted from Gajski et al. [277], Figure 4.8, page 127.

324

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

first is immediately when the condition on the edge occurs. This is called a transition- 

immediately arc (TI). The second time is upon completion of the code fragment for the 

state subject to the edge. This is called a transition-on-completion arc (TOC). Formally 

any arc in the PSM is represented as a triple (T, C ,NS) where T e  {TOC,TI} is the 

type, C is the condition governing when the transition is valid and NS is the next state.

6A.22 The Duality of Graphical and Textual Representations

What is fascinating about the SpecCharts formalism is that it at once draws from the 

graphical aspects of StateCharts and the textual representation of VHDL. While earlier 

presentations of SpecCharts [554] [555] concentrated on the graphical aspects, more 

recent developments have produced an equivalent textual representation for the artifacts of 

the notation [277].

The new language structure is called the b e h a v io r  and it supports the two kinds of 

hierarchy in HCFSM through its ty p e .  The leaf-level behavior carries the type co d e  and 

follows the pattern of the p r o c e s s  in traditional VHDL. That use is illustrated in Figure 

6-29. For the hierarchical states of the HCFSM, the “or” level has the type of se q u en 

t i a l  su b b e h a v io rs  while the “and" level has the type of c o n c u rre n t su b b e 

h a v io r s .  Additionally there is a notation for describing the two different kinds of edges. 

TOC and TI, between behaviors. These uses are illustrated in the partial example of Figure 

6-30* which defines a hierarchy of concurrent and sequential behaviors ultimately termi

nating at the leaf level with behaviors of type code.

What is significant about the SpecCharts textual description is that it has an analogous 

graphical description which is immediately derivable from the textual form. Or alterna

tively, for every graphical representation of a SpecChart there is an analogous textual rep-

1. Adapted from Gajski et al. [277], Figure 3.17, page 106.
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•ntity B ia
pore (Ft ia intagar; Q: out intagar);

•ad Ei

architactura A of B ia 
bagia

bahavior B typa concurraat aubbahaviora ia
typa int_array ia array (natural raaga <>) of iatagar; 
signal Mi int_array(IS denrato 0); 

bagia
X: (TOC, trua, camplata);
Yt (TOC, a3, ccoplata;
Z l

bahavior x typa aaquaatial aubbahaviora ia 
bagia

Xlx (TI, al, X2) t
X2t (TOC, a2, canplata);

bahavior XI typa coda ia

aad XI;
bahavior X2 typa coda ia

•ad X2; 
aad Xi

bahavior Y typa coda ia 
variable maxi iatagar; 

bagia
max :- 0;
for j  ia 0 to IS loop 

if (M(J) > max) thaa 
max :• M(J)j 

•ad if;
•ad loop; 

and Y;

bahavior Z typa coda ia

end Z; 
and B; 

and A;

Figure 6-30. A Sample SpecCharts Specification

resentation. The corresponding graphical representation for the example of Figure 6-30 is 

shown in Figure 6-31. *

6.4.23 The Semantics of SpecCharts

The PSM model and by extension SpecCharts are but a syntactic extension of the under-

l. Adapted from Gajski et al. [2771, Figure 3.21. page 111.
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E
p o r t  P , Q: i n t e g e r ;

typ« int_array ia array{natural ranga <>) o f iatagar; 
signal At int_array(15 downto 0);

XI
e l e3

X2
e2 e4

Figure 6-31. Equivalent SpecCharts Graphical Representation

lying semantics of VHDL. Underneath all of the notation, whether graphical or textual, 

the semantics is still the RMC semantics of VHDL. This can be observed by noting that 

the PSM model is a structuring of the sequential aspect of VHDL in terms of the hierar

chical state graphs of Harel’s StateCharts. Thus the semantics of SpecCharts is some com

bination of the discrete event semantics of VHDL aggregated according to the semantics 

of StateCharts.

In Section 6.2.3. the semantics of VHDL were shown to be RMC.  Too, the semantics of 

StateCharts were shown in Example 4.3.4.6 to be RMC.  Interestingly, a close inspection 

of both systems shows that at a fundamental level, the semantics of StateCharts and unit- 

delay VHDL are exactly the same:
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• both VHDL and StateCharts are R , additionally both are Rs ,

• both are M with the macrostep inter-process communication being dependent upon the 
8-step order in which outputs are produced,

• both are C because there exist descriptions for which there is no finite series of 5 -steps 
defining a macro step.

The strong conclusion that one must draw from this is that SpecChart’s syntactic structur

ing of the design into hierarchical and concurrent finite state machines does nothing to 

enhance or restrict the semantics of the formalism. So while the expressiveness and conve

nience of the SpecCh art formalism can be seen an important step forward in the evolution 

of system description languages, it offers little in the direction of a sound semantic basis 

for such descriptions.

6A.2.4 The Future Evolution of SpecChart Semantics

That the SpecCharts adopts the semantics of VHDL and StateCharts directly offers a 

possibility for the future evolution of the formalism. Indeed, the semantics of StateCharts 

underwent some evolution after its original presentation and there is no reason that this 

evolution could not be reflected in a modified semantics for SpecCharts. The original 

semantics of StateCharts given by Harel [330] had the RMC property. Later modifica

tions by Harel, Pnueli etal. gave an RMC semantics [3331. Finally Maraninchi developed 

in Argos [501] a StateCharts-like notation with the RMC property of the synchronous 

semantics. As well, an evolution of VHDL’s RMC semantics to the synchronous RMC 

semantics was described in the Synchronous VHDL subset of Section 6.3.2. This offers 

the potential for a union of the RMC semantics of Argos and Synchronous VHDL using 

the hierarchical behavior construct. The definition of such a language is clearly feasi

ble and would seem to be a very attractive, providing a synchronous semantics while at 

the same time addressing one of the major deficiencies of Synchronous VHDL: the con

straint of the flat process model of VHDL ‘87.
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6.5 Review

The difficulty in the analysis of discrete event semantics can be seen by placing the 

semantics of these languages within the framework of the RMC Barrier Theorem. This is 

accomplished in Section 6.2.3. This setting explains at the semantic level the problems 

that are inherent in the discrete-event basis of these languages. At the same time it sets up 

the proposals for moving beyond system specifications based on discrete event opera

tional models. Two of these are the annotation language approach and the identification of 

a constrained discrete event regime that preserves desirable semantic properties. These 

two approaches are typified by the VHDL Annotation Language (VAL) [351 and the Syn

chronous VHDL subset [471 respectively.

From this historical perspective one can look to developments coming to fruition in the 

near future such as the new VHDL ‘93 standard [3871 or the addition of hierarchical 

behavioral constructs into VHDL (SpecCharts) [2771. These developments do not 

directly add to the understanding of the semantics as they merely build upon the existing 

discrete event semantic model of VHDL *87. Their significance however is that they offer 

new language constructs that introduce known features into the standard language frame

work. In the sense used here, this integration is the essence of language design evolution 

in the form of the adoption of what were previously considered experimental features into 

mainstream use.
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The Non-Deterministic Abstract Machine

The theoretical framework established in the early chapters coupled with the analysis of 

the later ones encapsulates a method of semantics-directed language design. The perspec

tive so far has consistently been theoretical and observational; oriented at explaining, cri

tiquing and classifying. It remains to put the ideas and philosophy developed in this work 

into a concrete form in a practical design setting. This chapter therefore is dedicated to an 

in-depth presentation of an internal representation (IR) which has been designed using the 

ideas presented in the previous chapters: computational semantics, microsemantic analy

sis and the RMC Barrier Theory. In contrast with the previous chapters, the focus here is 

explicitly illustrative and designed to give the reader a view of how the semantic theory 

described previous can be put into practical use.

The Non-Deterministic Abstract Machine (NDAM) is a semantics-directed machine 

architecture oriented at the Synchronous Languages. As an exercise in the design of a 

semantics-directed internal representation, the abstract machine draws from the elements 

highlighted in each of the previous chapters. In particular

• From Chapter 2, the denotations of programs executing on the machine are transition 
relations. By extension, the instructions of the machine are instances of these transition 
relations in the small.

• From Chapter 3, the operational semantics of the machine is non-abstract and defines a 
sort of computational semantics. A microsemantic analysis shows that it is substan
tially similar to the 5-time presented in Section 3.4.3.
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• From Chapter 4, the microsemantic analysis shows that the semantics is RMC and thus 
the RMC Barrier must be surpassed. This is done by disallowing non-causal programs. 
Therefore, the NDAM has a causality checking problem.

• From Chapter 5, the NDAM is an applied semantics in the sense that it is explicitly ori
ented at the domain of imperative-style system description languages. This in contrast 
to being oriented at dataflow networks or the hierarchical Gnite state machine.

• From Chapter 6, the speciGc system description languages of interest are synchronous
sjubsets of the standardized tIDLs and of course Esterel which was the original impera- 
uve synchronous programming language.

The result is an internal representation which is designed to be suitable for a number of 

languages as is depicted in Figure 7-1.1

Synchronous 
SpecCharts ,

Synchronous 
VHDL ,Esterel

NDAM
Representation

Automata
Model

Figure 7-1. The NDAM Representation as a Non-Abstract Semantics

In fairness, it must be pointed out that, at this writing, there are a number of such inter

nal representations. At this point, the NDAM is no means unique in its addressing the 

Synchronous Languages. Other semantics-directed internal representations for synchro-

1. With the appropriate modularity checking procedure, as was defined for Synchronous VHDL in Section 
6.3.2.4. a son of “Synchronous Veriiog" could equally appear in that diagram.
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nous languages that can be named are:

• The SL Languages [64] [65] were presented in Section 5.7.2 as an one such instance. 
One which is oriented at dataflow-type representations. These instructions have been 
formalized in the gc internal representation [577] used by the Lustre and Signal com
pilers.

• The i c  and oc  internal representations [577]1 are used by Esterel v3 compiler [176]. 
These two internal representations have an instruction-set form and a tabular represen
tation respectively.

• Finally, with the advent of “the hardware semantics” [78] [264] [525], any representa
tion of combinational logic and latches (e.g. BLIF [109], BLIF-MV [107]) can be inter
preted as a semantics-directed internal representation for the synchronous languages.

The following sections provide an overview of the NDAM concentrating on the design 

principles used, the causality checking problem, its computational semantics, and the 

application issues of high-level language compilation and a runtime generation. The pre

sentation here highlights the interesting and distinguishing features. A detailed exposition 

of the assembly language form can be found in Appendix A.

7.1 The Abstract Machine

The abstract machine is based on the usual model of an instruction set processor with 

extremely simple instructions and an unbounded number of registers [10]. The intent is 

that the preliminary translation from the high-level language will exploit this feature, leav

ing to a later optimization phase the collapse of temporaries into a much smaller number 

of “hard” registers. The abstract machine is distinguished from other more traditional 

internal representations of compilers (e.g. PCCIR [345] or U-CODE [172]) in three ways. 

First, the notions of process and concurrency are explicit in the internal representation.

1. The design of the NDAM as the internal representation for Synchronous VHDL [47] somewhat predates 
the formal standardization of the definitions of lc. oc and gc. I am most grateful to Albert Benveniste and 
Gdrard Berry for their invitation and support in the spring of 1994 during which I translated the standards 
document [577].
It is now clear that the NDAM. save for the detailed syntax, is substantially similar to i c .  The sole substan
tial difference is the operational definition of the TCHC instruction (defined in Section 7.1.3.3) in terms of a 
dynamic fixed-point. This technique and its effect on implementations is detailed in Section 7.5.
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Secondly, and related to concurrency, the representation of inter-process coordination and 

of synchronization are explicit as well, taking the form of a special class of variables 

called signals that are subject to two restrictions: within a step, they have the property of 

single assignment and they must always be written before they are read.1 Finally there is 

an explicit notion of exceptions, whereby one portion of the design can preempt other por

tions and return control to a higher level in the nested process structure.

7.1.1 Design Constraints

In addition to these major features of the representation which are oriented directly at 

supporting the synchronous semantics within an imperative style, there are certain other 

aspects to the design as well. These relate to its sufficiency and generality and are related 

to the two uses of a non-abstract semantics. On the one hand, viewing the diagram of Fig

ure 7-1 from the high-level language downward, there is an issue of expressive suffi

ciency: namely can the internal representation support, in a reasonable and cogent fashion, 

the conceptual structures from the source language. On the other hand, from the semantic 

model upward, there is the issue of the semantic characteristics: namely can the internal 

representation represent a reasonable number of the feasible mathematical structures of 

the denotational model.

7.1.1.1 Expressive Sufficiency

One view of the expressive sufficiency is defined by Gajski et al. [697] [277] [698] in 

the Program State Machine (PSM) model. A representation and even a specification lan

guage can be measured against how it supports the following seven attributes:

l. These restrictions ensure modularity. The theoretical basis for them was presented in Section 3.4.3.2 as 
the domain definitions of outputs in 5-time.
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/. Hierarchy
Is there support for hierarchy in structure and behavioral aspects? Structural hierarchy 
would include features such as instances or macros while behavioral hierarchy would 
include nested states or processes and subprograms.

2. State transitions
Is there a notation for directly describing states and transitions between those states?

3. Programming constructs
Is there a notation for describing sequential blocks of program-type code?

4. Concurrency
Is there an explicit representation of concurrency? This includes the representation of 
so called “macro” concurrency between coordinating processes as well as the so called 
“micro” concurrency describing the independence of certain subexpressions in an oth
erwise sequential body of code.

5. Exception handling
Is there a way to express non-standard exit paths? For example, a desirable language 
feature is the ability to declare that under some circumstance, one portion of the (con
current) design preempts the execution of the rest of the system and returns control to a 
higher authority.

6. Completion
Is there a way to express that some sub-portion of the design has completed its compu
tation is now “done?” In particular, once the termination has occurred, can control be 
recovered by a higher authority. There exist representations such as co-automata where 
termination is explicitly not a part of the definition.

7. Equivalence of state transitions and code
Is there some way to treat the state-transition representation mentioned in item 2 in an 
equivalent manner as the programming language aspects of item 3.

These characteristics relate most directly to the specification language itself. Indeed, the 

argument of Gajski et al. [277] is that all seven of these attributes are necessary in a proper 

specification language. Further, they argue that only the SpecCharts extension of VHDL 

provides all of these attributes to the programmer. Their argument is directed exclusively 

at the properties of the specification language and explicitly avoids any analysis of seman

tics. As was pointed out in Section 6.4.2.3, the semantics of SpecCharts is fundamentally 

that of VHDL: it has three levels and is RMC and flsA/5C5. In contrast the focus of this 

work is exclusively with the conditions when synchronous semantics is well-defined to
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the exclusion of language features. However, in designing an intermediate representation, 

both views must be taken into account

7.1.12  Semantic Characteristics

From the perspective of the semantic model upwards, there are certain properties that 

must obtain in the semantics of the internal representation for it to properly represent a 

synchronous system. These properties were presented in Section 5.7.1 with explanation. 

They are reiterated here briefly:

1. Perfect Synchrony

2. Multiform Time

3. Projective Semantics

4. Concurrency

5. Determinism

Of these five, the only one which requires further mention is Item 5 stating that synchro

nous semantics are deterministic. Yet the very title of NDAM contains the word nondeter

minism in it, so how are these two views reconciled?

There is a subtle but important distinction which must be made in the different kinds of 

nondeterminism which can exist in a non-abstract model. The first kind is a sort of 

“declarative'’ sort of nondeterminism which states that there exist multiple possibilities 

that are not constrained from within the semantic model. This sort of nondeterminism has 

been called selection nondeterminism}  The second sort of nondeterminism is a sort of 

“imperative” nondeterminism which is used to model concurrency as the nondeterministic 

interleaving of multi-step paths in separate modules. This sort of nondeterminism has 

been called ordering nondeterminism. Of the two, selection nondeterminism is wholly 

consistent with the computational semantics of synchronous languages because it does not

L. Gajski et al. [211], page 83.
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destroy modularity. In contrast, ordering nondeterminism is, on its face, inconsistent with 

synchronous semantics because it is non-modular. This can be seen in the very definition 

of modularity from Section 4.1.2 and from the two M  microsemantics in Eq 4.3.4.3, Eq

4.3.4.5 and Eq 4.3.4.6.

The nondeterminism supported by the non-abstract semantics of the NDAM is exclu

sively selection nondeterminism and never ordering nondeterminism.

7.1.2 Structural Constructors

An NDAM description consists of two sorts of constructions. There are structural con

structors which define the physical hierarchy of the system and its interface to the outside 

world. The other sort of constructor are the behavioral constructors which define what the 

network does at the 8-time level, and by extension at the macrotime level. This section 

defines the structural constructors.

7.1.2.1 The Network

The network is defined in terms of the data types available within it. the signals it 

exports to the outside world, the signals available within it and its processes. The net

work’s interface to the outside world is exclusively through the exported signals. This is 

depicted in the diagram of Figure 7-2.

The network declaration is as follows:

network N(NAMB) is 
{ t y p e - d e c l a r a t i o n  

signal- d e c l a r a t i o n  
i n p u  t - o r - o u  t pu t- d e c l a r a  t i o n  
p r o c e s s - t r e e - d e c l a r a t i o n  } 

end network N {NAME)

The types and signals declared at the top level of the network are visible to all processes in 

the network. The i n p u t - o r - o u t p u t - d e c l a r a t i o n  defines which declared signals
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signals

processesP(l) X P(2))( P(3) )( P(4) X P(5) )( P(6)

Figure 7-2. A Network of Processes Communicating via Signals

constitute the interface of the network. The remainder of the signals are thus considered 

internal to the network though are visible to all process.

7.1.2.2 The Process 'Tree 

The network declaration is purely a structural artifact that aggregates and hides all inter

nal structure. The major internal structure of the network is its processes. Processes are 

hierarchical entities, being able to contain other processes. These subprocesses are orga

nized into a process tree that defines the call-callee relationship between the processes. 

The process tree is a static definition of the parent-child relationship between processes. 

However, while the process tree is static, the invocation of processes in the tree is a 

dynamic artifact of the behavior of a process. As such, all the process tree does is explain 

the behavioral and structural nesting of (possibly concurrent) control flows within the net

work.

A parent can only make calls to its immediate children in the process tree structure. 

Conversely, a process can only have a single parent in the process tree. These restrictions 

ensure that the control flow structure among the processes is fixed and therefore can be 

statically analyzed. The sufficient constraint is that the process call structure is not self-
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recursive.

The network’s process tree is declared in two parts. The first kind of declaration indi

cates which processes are at the top-level of the network. There may be multiple processes 

at the top level. This merely indicates that they are all executing synchronously and in par

allel at all times. The second kind of declaration in the process tree declares the internal 

branches of the tree. The leaves of the tree are those processes that have only parents in 

the process tree. The two kinds of process tree declarations are:

top: P ( M M B - l )  , P (NAME-2), ... P (NAME-N)
P(NAME-I): P (NAME-I-1) , P(NAM E-I-2) , ... P(NAME-I-K)

An example network including its process tree declarations is given in Figure 7-3.

network N(l) is
... other declarations ...
top: P(0)
P(0): P(l), P(5)
P(l): P(2), P(3)
P(3)» P(4) 
end network N(l)
... process declarations ...

Figure 7-3. A Network and its Process Tree

7.1.23 A Process

The network and its process tree define the overall structural hierarchy of the system,
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the instructions within each process define its behavior. At the boundary between these 

two is the interface to the process. The interfaces are the set of entry points from which the 

process may be called by its (unique) parent The provision for this extra piece of informa

tion is critical for dataflow and control flow analysis used in the causality checking algo

rithm presented in Section 7.2 because the behavior of a process as seen by its parent on 

its first invocation can be summarized at its interfaces.

An interface declaration is:

interface I(start) L(0)
This declares an interface named ‘s t a r t ’ at label 0 in the instruction body of the pro

cess. There may be multiple interfaces in a process. Although a process may have multiple 

entry points, the structure of the process tree ensures that there is only one thread of con

trol within the process.

A process therefore consists of declarations and instructions in the following form:

process P (NAME) is 
{ type-declaration 

signal-declaration 
register-declaration 
exception-declaration 
counter-declaration 
interface-declaration 
instruction } 

end process P (NAME)

The declarations within a process are visible both within the process, and to its child pro

cesses. The forms of the various declarations is similar to that of the signal in the network, 

except that a process can declare types, signals, registers, exceptions and counters:

type T(NAMB) SIZE  
signal S(NAMB) T (NAME) 
register R (NAME) T(NAME) 
temporary R (NAME) T (NAME) 
exception E(NAME) T(NAME) 
counter C(NAME) VALUE
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The utility of these declarations is made clear in the following section which covers the 

behavioral constructors. In short: a type is used to mark all value carriers with the domain 

to which they belong; signals are the special sort of single-assignment register which is 

used to coordinate inter-process communication and ensure the modularity of the seman

tics; registers constitute the aspect of the state space of the process and are used to hold 

values both within 5-time and between macrosteps; a temporary is a special sort of regis

ter which is used only within 5-time; an exception is a special sort of register which is 

used to communicate the value thrown in an exception back to the parent’s catcher; and a 

counter is a special sort of decrement-only register which is used to model the counted- 

signals aspect of Esterel.

7.1.3 Behavioral Constructors

The behavioral constructors are declarations and instructions which define the behavior 

of a network both in 5-time and by extension in at the macro level. This section defines 

the interesting and unique instructions of the NDAM and gives their informal semantics. 

A formal semantics which precisely specifies the operational semantics of the NDAM is 

deferred until Section 7.3.

The instruction body consists of NDAM instructions prefixed by labels of the form 

L(ADUIE). Presentation of instruction body examples is deferred to Section 7.1.4 at which 

point the various instructions will have been presented.

7.1.3.1 Signals

Signals are the only means of inter-process communication. They provide a means by 

which values are transferred between processes. Additionally they provide a synchroniza

tion mechanism by virtue of the fact that a signal cannot be referenced (in a reader) until 

its value is defined (by a driver). A signal may only be assigned once in a macrostep.
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There are. in effect, by this distinction of reader and driver, two classes of signal-manip- 

ulation instructions: those that drive signals and those which operate based on the pres

ence/absence or value on a signal. The emit instruction is the unique instruction used to 

assign a value to a signal:

emit S(Lfiff) R(RHS)

The emit assigns the value of the right-hand side onto signal S(LHS) in the 
instant. It is effectively a special class of assignment. It is unique in that it defines 
the presence of the signal S(LBS) henceforth in the instant.

The second class of signal-manipulation instructions are those that deal with the consumer 

side of the equation. There are two instructions that access the value and presence or 

absence of a signal. These are:

R(LHS) :- presence S(RHS)
R(LHS) selection S{RHS)

The presence instruction returns a single-bit result indicating whether the sig
nal S (RES) is present or absent in the current instant.

The 'selection' instruction returns the value on the signal in the current instant. Some 

further comments on this terminology and its relevance to the particular form of selection 

nondeterminism used in the NDAM are deferred until Section 7.1.3.4. There is a particu

lar form of the conditional that transfers control based on the presence or absence of a par

ticular signal within an instant:

present [not] S(NAME) goto L{NAME)

This instruction branches to L {NAME) if the signal S (NAME) is present in the 
current instant. Otherwise it continues on to the successor instruction.

Of note here is that the present instruction could be just as easily derived from the fol

lowing sequence of instructions:

type t(bit) 2 
temporary R(tmpO) t(bit) 

R(tmpO) :■ presence S(NAME) 
if R(tmpO) goto L{NAME)

342

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Conversely, the ‘p r e s e n c e '  accessor instruction could be derived from the p r e s e n t  

branch test and a temporary. Both exist in the intermediate representation for conceptual 

efficiency in code generation from the high-level language.

Signals are the unique synchronizing vehicle within 5-time. They are required to 

present a single value and presence/absence status to all readers in the macrostep. Thus 

they must obey a restriction to single assignment across 5-time and no reader must access 

a signal in a 5 before it has been written. To ensure that a signal is not read before it is 

written across 5-time, a barrier instruction ‘r e q u ir e '  suspends the containing thread of 

execution until the mentioned signals have become known 5-time:

require S (NAME-1) , S(NAME-2) , ... S (NAME-K)

The 'r e q u ir e '  instruction is a barrier instruction that can be used to block a pro
cess within the instant until the presence/absence, and therefore the value, of the 
signals s  (KAM B-i) is defined.

This blocking occurs only within the macrostep. Wthe status of each S (NAME-i) is 

known then a 'r e q u ir e '  does nothing. A ‘r e q u ir e '  must precede every signal acces

sor instruction (e.g. ‘s e l e c t ’ or 'p r e s e n c e ')  on a control flow path. Its use is illus

trated in Figure 7-4.

There is one further class of instruction that interacts with signals. It supports the notion 

of interrupts wherein the emission of occurrence a signal causes a blocked computation to 

proceed. Interrupts are handled by the try-call-watching-catching (TCWC) instruction 

which also manages exceptions and the concurrent execution of subprocesses. Its presen

tation is deferred until Section 7.1.3.3.

7.1.32  Exceptions

Signals are the one means by which processes can pass values and coordinate their 

5-step execution. Exceptions on the other hand allow for one process to preempt all of its

343

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

type t(int) 65356 
type t(pure) 1 
signal S(l) t(int) 
signal S(2) t(int) 
signal S(3) t(pure) 
signal 3(OUT) t(int)
temporary R(tl) t(int) 
temporary R(t2) t(int)
L(0): require S(l), 3(2)

R(tl) selection S(l)
R(t2) :■ selection S(2)
require 3(3)
present 3(3) goto L(2)
R(t3) :■ R(tl) + R(t2) 
goto L(2)
R(t3) R(tl) - R(t2)

L(2): emit S(OUT) R(t3)
exit —  we're done

Figure 7-4. The Use of ‘require' to Ensure Definition Before Use

siblings (and their children) and dictate a return into the parent where the exception is 

‘handled.’ This is all accomplished within a macrostep in a manner which is entirely con

sistent with synchronous semantics.

There are three exception handling instructions. The two that raise an exception and ref

erence its thrown value are presented in this section. The presentation of the third TCWC is 

deferred until the next section. Section 7.1.3.3.

r a i s e  E (LHS) R (BHS)

This instruction raises the exception E(LHS) passing R(RHS) back to the excep
tion handler in the parent. The execution of the ‘r a i s e ’ preempts all of the pro
cesses below the parent which is handling the exception in a TCWC. Control is 
returned into the parent’s exception handler.
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R (LHS) : ■ r a i s e d  E (RHS)

The ‘raised’ instruction recovers the thrown exception value from the virtual 
register E (RHS) into a register in the parent. This instruction is only valid in the 
exception handler when the there is a meaningful quantity in E (RHS) .

The instantiation of exception handlers and the invocation of the handler’s instructions 

after a ‘raise’ has occurred is dealt with in the TCWC instruction.

7.1.33 TVy-Call-Watching-Catching (TCWC)

The instruction that is the most unique to the NDAM is also its most complicated. It is 

the “7>y Call Watching Catching ” (TCWO instruction which manages three features:

1. the commencement and continued concurrent execution of subprocesses.

2. interrupts or guarding against a signal’s presence in the instant.

3. exception handling and recovery from raised exceptions in the instant.

The fully general form of the instruction is shown in Figure 7-5. Either or both of the 

‘watching’ and ‘catching’ subclauses may be absent. This indicates that no signals 

are guarded against and that no exception handlers are instantiated respectively.

try
call P( CHILD-1) I (NAME) ;
call P (CHILD-2) I (NAME) ;
•  •  •

call P (CHILD-K) I (NAME) ;
watching

when [ C(NAM E-l) ] S (NAME-1) goto L (NAME-1) ;
when [ C(NAME-2) ] S (NAME-2) goto L (NAME-2) ;
•  •  •
when [ C(NAME-L) ] S (NAME-L) goto It (NAME-L) ;

catching
handle E(NAM E-l) goto L (NAME-1) ;
handle E(NAME-2) goto L (NAME-2)  ;
•  •  •

handle E(NAME-M) goto It (NAME-M)

Figure 7-5. The Fully General Form of the TCWC Instruction
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When the TCWC is executed, it starts its child process P ( CHILD-i) starting each at its 

entry point I {NAME). The children execute in synchronously and concurrently. There are 

two cases for the TCWC. the case when the TCWC is first executed in a macrostep and the 

case when it continues to be active in a successor macrostep.

There are three possibilities for TCWC during the first instant that it is executed:

1. If all the P (CHILD- i) processes exit in the current instant then the tcw c pro
ceeds on to its successor instruction.

2. If any child raises an exception handled by this TCWC then all the children are termi
nated at the end of their 5-steps. Execution continues on at the label L (NAME) of 
the appropriate ‘handle’ clause. This gives the “last wishes” flavor of exceptions.
If any child raises an exception that is not handled by this TCWC then the calling 
TCWC with such a handler takes care of the exception. There will always be such a 
parent in a correct network.

3. If no child executes a ‘raise’ but any child halts then the TCWC blocks for the 
macrostep.

In subsequent macrosteps the TCWC checks the signal guards in the ‘when’ clauses and 

executes the child processes only if no signal counter has expired. Thus, the child pro

cesses of the TCWC execute only after the status of the guarding signals becomes known. 

There are four elements to execution of the TCWC in the second and subsequent instants of 

its invocation:

0. All signal guards are checked. If any signal guard’s counter has expired (reached 
zero) then all the P (C H IL D - i ) are terminated and execution proceeds at the label 
L (NAME) of the appropriate ‘when’ clause signal handler.

Cases 1,2, and 3 are all same as for the first instant of invocation.

7.1.3.4 Selection Nondeterminism

The NDAM supports selection nondeterminism within the RMC  synchronous seman

tics because it does not violate the modularity requirement Nondeterminism of this sort is 

used as an abstraction mechanism in formal verification as was described in Section 

5.7.1.5. On the NDAM, nondeterminism comes into play when emitting multiple values 

on a signal in a single 5-step or branching to more than one successor instruction. To this
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end there is a nondeterministic variant of the ‘emit’ instruction. As well, the ‘goto’ 
branch instruction has a nondeterministic variant that has multiple branch targets. The key 

distinction in these instructions is that they do not destroy the M  property; they do not 

introduce ordering nondeterminism.

The nondeterministic versions of these two instructions are:

emit S (LHS) R (R H S - l )  , R ( R H S - 2 ) , ... R(RHS-K)

The ‘emit’ assigns one of the values of the R ( R H S - i ) onto the signal s  (LHS) 
in the instant.

goto L (N A M E -l)  ,  It (NAME-2) , . . .  L(NAME-N)

The program counter of the process is assigned to one of the L (N A M E -i).

These are the only two nondeterministic instructions on the NDAM. With these nondeter

ministic forms, the signal accessor instructions are said to resolve the nondeterminism.

7.1.3.5 Other Instructions

The other instructions are as might be expected on a infinite-register reduced instruction 

set architecture. These include assignment operations, addition, subtraction, branch, test- 

and-branch and the like. The “traditional” instructions are as follows:

R(LHS) R(RHS)
R (LHS) :■ unary-op R(RHS)
R(LHS) :■ R (R H S - l )  binary-op R(RHS-2)  
if [not] R(NAME) goto L(NAME) 
goto L (NAME) 
null

These instructions are given in detail in Appendix A.

7.1.4 Examples

An example that illustrates the basic instructions, is shown in Figure 7-6. That figure 

shows a fragment of C code and the corresponding NDAM assembly code.1
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/* Kaelid'a algorithm »/
{

abort a, b; /• fillad acmabow*/

/* praaumably R(a) and R(b) ara 
fillad with walaaa aamahow*/

whila (b la 0) { 
int aO • at 
a ■ b» 
b • aO t b|

/*a containa tha raault*/

typa t(ahort) 65535 -- 2*16
ragiatar R(a) t(abort) 
ragiatar R(b) t(abort) 
conatant R(0) t(ahort) :■ o

typa t(bool) 2
—  praaumably R(a) and R(b)
—  ara fillad with valuai aamahow 
tamporary R(t^>i) t(bool)
L(0)j r(t^>l) i- R(b) i- R(0)

if r(t^l) goto ii(l) 
tamporary R(aO) t(ahort)

R(a0) r(a)
R(a) R(b)
R(b) R(aO) mod R(b)
goto L(0)

L(l): axit —  raault in R(a)

Figure 7-6. Euclid’s Algorithm in C and in NDAM Assembly 

A more detailed example that shows a wider range of instructions, including the net

work, several subprocesses and concurrent TCWC is shown in Figure 7-7a and Figure 7-7b 

respectively. That example is the classic Esterel stopwatch example.^ The process tree for 

the network is shown in Figure 7-7a along with the original Esterel source. The presenta

tion of the compilation recipe used to create that example is deferred until Section 7.4.1.

7.2 Causality Checking

Synchronous semantics is, by definition, R MC . Thus for implementations which will 

execute in the real world, there is an obligation to ensure that the systems described in the 

semantics are causal: there must be a well-defined way to execute them forward in time. 

The goal of causality checking is the determination of whether a NDAM network has the 

correct state-dependent partial order (/, o) for every reachable state Q .

A causality checking procedure in the barest sense is decision procedure that returns 

TRUE or FALSE as to whether the network has the appropriate <Q (/, o ) . Any implemen-

I. From Cormen ei al. [2061. page 810.
1. Adapted from Halbwachs [320], page 23 and 26.
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module STOPWATCH_l:
Input START_STOP, HS, RESET; 
output TIME(integer);
loop

vmr TIME : ■ Ot integer in 
loop

C TO) )

emit TIME(TIME); 
await START_STOP; 
do

C pw)
every HS do

TIME s- TIME+1; 
emit TIME(TIME) 

end every 
upto START_STOP 

end loop 
end var 

each RESET 
end module

( P ( 2 ) )

Cnv) C

Figure 1-7sl. The Classic Stopwatch in Esterel

tation of such a causality checking procedure should have other desirable properties as 

well. These properties include:

1. If the answer is FALSE. that the network is C, then some sort of diagnostic trace should 
be produced that indicates why this is the case. Specifically, for which reachable state 
Q the causality failure occurred.

2. The decision procedure should be ‘quick’ in the sense that it can usefully be used in 
interactive or semi-interactive contexts the same way that a traditional compiler is used.

On the positive side, there are known approaches for designing diagnostic causality 

checking algorithms. This satisfies the first criterion. Unfortunately, as is pointed out in 

Section 7.2.2, the general causality checking problem is intrinsically difficult: having been 

shown to be NP-complete. Thus as the size of a description grows, exact causality check

ing must be dropped in favor of conservatively estimating the state-dependent causal order 

within a step. Such an exact and estimating scheme is defined here in Section 7.2.3 using a 

flattened representation of the hierarchical NDAM process tree.
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network N(l) is 
topi P(0)
P(0): P(l)
P(l): P(2), P(3)
P(3)s P(4), P(5) 
typo t(unit) 1 
typo t(bool) 2 
typa t(int) 0 65536 
signal s(0) t(unit)—  tick 
signal s(l) t(unit)—  START_STOP 
signal s(2) t(unit)—  HS 
signal s(3) t(unit)—  RESET 
signal s(4) t(int)—  TIME 
input: s(0), 8(1), 8(2), s(3) 
output: 8(4) 
and network N(l)
process P(0) is 
constant R(unit) t(unit) :■ 0 
constant R(false) t(bool) :■ 0 
constant R(true) t(bool) :■ 1 
constant r(intO) t(int) :■ 0 
constant r(intl) t(int) :■ 1 
temporary R(tmpO) t(int) 
temporary R(tmpl) t(int) 
register r(0) t(int) :■ 0—  TIME 
L(0): try

call P(l) 1(0); 
watching

when s(3) goto 1,(1)
L(l): goto MO) 
end process P(0)
process P(l) is 
interface 1(0) L(0)
1,(0): r(0) :■ r(intO)
Ml): emit s(4) r(0)

M2) i try
call P(2) 1(0); 

watching
when s(l) goto L(3) 

M3): try
call P(3) 1(0); 

watching
when s(l) goto L(4) 

L(4): goto Ml) 
end process P(l)
process P(2) is 
interface 1(0) L(0)
M0): halt 
end process P(2)
process P(3) is 
interface 1(0) M0)
M0): try

call P(4) 1(0); 
watching

when s(2) goto Ml) 
M l ) : try

call P(5) 1(0); 
watching

when s(2) goto M2) 
M2): goto Ml) 
end process P(3)
process P(4) is 
interface 1(0) M0)
M 0 ) : halt 
end process P(4)
process P(5) is 
interface 1(0) L(0)
M 0 ) : r(tmp0) :* r(0) + r(intl) 
Ml): r(0) :■ r(tmp0)
M2): emit s(4) r(0)
L(3): halt 
end process P(5)

Figure 1-lb. The NDAM Network for the Stopwatch

7.2.1 Problem Definition

The definition of causality used in Section 4.1.3 was the existence of a state-dependent 

partial order relation <Q (/, o) which respects composition. In that context, the existence
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of <q (/, o) had the specific meaning that there existed pairs I  (/) and O (o) which 

were causally related in the sense of the inputs must be available before the outputs could 

be computed. This relationship could depend on the state Q (c) whence it was observed. 

The key element of causality was that the partial order respected composition; that for a 

state defined as two components Qx x (70 that (i, o) respected the causal orders

of both communicating components < . (/, o) and <n (/, o).
s l \  \£ i

In the study of the microsemantics in Chapter 4 that definition of causality was seen, in 

practice, to be a property of the 8-path emanating from a particular state Q . Causality is 

a requirement that an output, be written in some 8-step before it is read. In the terminol

ogy used in the NDAM, this is stated as the condition that a signal must be defined by 

an ‘emit' before it is accessed (‘select,' ‘presence' or ‘present’ test) and this 

must be verified along every 8-path emanating from every reachable state. This more intu

itive view is depicted in Figure 7-8 with the intuitive view of a causality problem being 

illustrated in Figure 7-8.

e m it  x e m it  z  a c c e s s  y

Q  a c c e s s  x  e m i t  y  a c c e s s  z

f, , T, | |? 1 T| | |? | T| |
S, £

1 1 
5-j 6^ i. 5 86 87 8S 89 8108II 812 814 814 815 816 817 818

Lo

Figure 7-8. Causal Consistency on a 8-Path

There are two features which make this problem non-trivial in the general case. The first 

is that the causal ordering property must be verified for every 8-path out of every reach

able state. This means that the size of the general causality checking problem grows with 

the size of the state space of the system. The second is that the generation of the 8-paths is
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complicated by the distribution of the emission and access across the concurrently execut

ing processes. This means that the reachable state space must be traversed in order to gen

erate the 8-path.

e m i t  za c c e s s  x a c c e s s  y

e m i t y e m i t  xa c c e s s  z

i iT i i TiT i l lI

Figure 7-9. The Manifestation of Causality Problems on a 8-Path

The following sections describe known approaches to the general causality checking 

problem in a general setting (i.e. independent of the NDAM). Following that is the formu

lation of the causality checking problem for the specific case of the NDAM.

7.2.2 Known Approaches

There are two approaches to the causality checking problem. The first uses an explicit 

enumeration of the reachable state space and the 8-paths between the states. The second 

uses an implicit or symbolic representation of these items.

7.2.2.1 Explicit Enumeration

Conceptually the explicit enumeration technique is straightforward and is sketched in 

Figure 7-10. In practice, this procedure is extremely expensive because it visits every state 

and every edge of the state transition graph of the program. The set V ultimately grows to 

hold the reachable state set whose size potentially grows as the product of the number of 

concurrent processes. Additionally the inner loop explores every feasible transition out of
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every stale and the number of such input combinations grows as the product of the number 

of inputs as well.

axplic±t_cauaality_check(program, initial-state*)
{

lot I  ■ Initial-states //a non-empty sat of states 
let W = / // the work set (states to visit)
let V = 0  // the set of visited states

while [W|>0 { 
choose s S W
V = V'u {5} // note that s has been visited
foreach / e INPUT { // Inputs from the environment

simulate s  —> Sj —» 8., —> t
ensure that k <  co by checking for 3/,y.5(- = 8y
if A" = oo report an "instantaneous loop" 
check for causality property on the S-path
if t £ V

W = W kj {(}
>

}
}

Figure 7-10. Causality Checking by Explicit Enumeration

In practice a less accurate version of this algorithm is used. In particular, a distinction is 

made between “data” states which are held in variables and “control” states which corre

spond to the positions of the program counters in active processes. These correspond, in 

the NDAM context to the r e g i s t e r  values and the locations of ‘h a l t ’ instruction 

respectively. The convenient abstraction is to ignore the contribution of the data states and 

the instructions that process them. This leads to a much more abstract version of the “sim

ulate” which can estimate if a causality problem may occur in the 8 -path emanating from 

a reachable control state. Another simplification is to place restrictions on the environ

ment in which the program will be placed. The environment guarantees that only a subset 

of the possible input event combinations will ever occur; equivalently, the unobservable
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input event combinations are an input “don’t care” set for the program. This has the effect 

of making the set INPUT much smaller than it would otherwise be. Explicit causality 

checking under these restrictions is feasible for many programs.1

72.22  Implicit Enumeration^

Experience has shown that implicit or symbolic formulations of explicit algorithms are 

often quite attractive. The benefit lies in the observation that the size of the symbolic rep

resentation is often entirely unrelated to the size of the state space being manipulated. The 

same can be said of explicit causality checking. In the formulation of causality checking 

from an implicit or symbolic perspective, the system is viewed from the perspective of 

approximator functional. This is depicted in Figure 7-11 with the sets Qt- and Q. , rep

resenting the current-state and the next-state of the network respectively. In turn, these 

states are defined in terms of intermediate 8-states which are denoted Qs and Qs 

respectively. The significant point in that diagram is that there are k feedback dimensions 

between and Qs . The ability to identify or estimate k is crucial to the following 

development because it is the finite point at which the fixed point is reached. Either:

F = . T { F }  = p F J r =  [J iT \ Fg} (Eq 7-1)
5 / = o

or there is no other finite point k < oo, so necessarily:

F = *T{ F} = nF [J  3T{FS} (Eq 7-2)
5 » = o

The distinction between Eq 7-1 and Eq 7-2 is merely the number of iterations before the 

fixed point. The key to the implicit causality checking decision procedure is the use of the

1. Procedures like the one shown in Figure 7-10 are used in the early Esterel compilers. These are described 
in Section 7.5.3 distinguishing them along the lines of the runtime implementation that they use.
2. I thank Gdrard Berry for pointing out the relevance of Malik’s analysis of cyclic combinational circuits 
[494] to the causality checking problem. This technique has since been incorporated into the causality 
checker of the Esterel v4 compiler [2641 [525].
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I
V j /

k

Rgure 7-11. Causality from the Perspective of the Image Computation 

structural metric k which is the number of dimensions of feedback, in a theorem which 

states that if the fixed point does not happen by a point A (k) then it won’t happen until 

infinity. Having a fixed point at infinity implies that there exists at least one 8 -path which 

never terminates. Obviously such a path cannot be compressed to finite size so that it 

could be embedded in a single macrostep.

With this formulation in mind, the question of causality becomes one of whether QjJr { 

is uniquely determined from Qi and this is checked by checking that the following prop

erty holds:

That is. it is necessary to check, for each step in 0 < / < A (k), that Fi a  Fj+ an equiva

lent check is that FAlk) is a limit point for the domain Q -+Q .

As with the case of Eq 3-51. there need not be a material representation for the F( such 

that Fi a  Fj+l can be established. Conveniently, as with the explicit case of Section 

7.2.2.1, the property of Eq 7-3 need not hold for all states Qr  Let Q* denote the reach

able states of the system; Eq 7-3 need only hold for the Q{ c  Q* . Intuitively, the network 

can behave arbitrarily when executed from an unreachable state since no such state can 

ever be observed. Thus, Eq 7-3 can be specialized to Q* , iterating until Q8 stabilizes or

(Eq 7-3)
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the limit of i = A (k) is reached:

f0{e*,e5o} c Fj Hp .Gb,} c f j{ 2 ',e 5;) = - = fA(4) ie*-e«A(i,» (Eq7-4)

That is, it is necessary to check, for each step in 0 < i < A (fc), that Qs cz Q* ; an equiv-
i 1

alent check is that Q§  ̂ is a limit point for the domain Ss .

The following theorem guarantees that if (?s  ̂ is not a limit point then the fixed point 

must be at infinity. The theorem follows Sharad Malik’s original formulation for the flat 

Boolean domain shown in Figure 3-3. The new aspect here is the generalization of that 

result to arbitrary finite domains (i.e. to non-flat domains). The iteration limit A (k) is 

generalized and shown here to be the sum, over the k feedback paths, of the lengths Tt. of 

the longest increasing chain of the feedback domain:

k
M *) = Z r ,- (Eq 7-5)

/ = i

Where the domains on every feedback paths is the same this reduces to the product of the 

number of feedback paths k and the length T of longest increasing chain in the domain: 

A(&) = k x  T (Eq 7-6)

Of course, the original bound is a special case of this since the longest increasing path in 

the Boolean domain is T = 1: thus A(k) = k.

The Fixed Point Bound Theorem

Let the k internal variables of a non-abstract image semantics be identi
fied. Let A (k) be as defined in Eq 7-5. Then, either the fixed point, p ZF. 
of the semantics’ approximator functional, £F , occurs in A (k) steps as 
per Eq 7-1 or there is no finite limit point for the semantics: and therefore 
the limit point is infinite as per Eq 7-2.
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Proof Outline

The k  internal variables of any non-abstract image semantics can be identified by exam

ining the dimensions of the semantics that are projected away by the projection IT to full 

abstraction. These variables can be identified by an examination of structure of the 

microsemantics.

When k = 0 there is no internal feedback in a macrostep, the semantics is fully 

abstract and Qi+i = F{{2t} is existential. Therefore the proof establishes the case of 

k = 1 and then generalizes this result to arbitrary k.

Observe from Figure 7-11 that a state in the non-abstract semantics consists of two 

components: the external component Qt and the internal component Qs , which when 

associated as a tuple are written (^Q{, Qs^. Also observe that, on the iterations before the 

fixed point when j  < A (k) , that Qi+ , may not be complete: the values appearing there 

are only approximations of the values which will finally appear there. To denote the 

incompleteness that precedes the fully complete Qu v  the notation SQ.+ { is used. This 

quantity has the following two properties:

Let Fg be the primitive image functional for the non-abstract semantics as per Section 

3.4. In application form and using the tuple notation defined above this gives:

Proof

(Eq 7-7)
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For the case of k = i in Figure 7-11, four sorts of dependencies can be distinguished in 

the microsteps of the semantics:

A dependency is defined relative to the monotonicity of Eq 7-7 for a state Q = Q(, Qs j .  

A dependency is an implication that an increase, relative to c ,  in the accuracy of the left- 

hand side implies a potential increase in the accuracy of the right-hand side. The fixed 

point occurs when there is no increase across Eq 7-7 and instead there is equality. Causal

ity checking centers around exploiting the dependency structure in the verification that Fs 

is in fact monotonic over Q .

Two cases can be identified in Eq 7-7:

Thus either F& increases or it does not. When it does not, the fixed point has been 

reached. Examining the two components, Qs and s (2/+l in light of the dependencies 

establishes iteration bound A (&) until the fixed point. Consider:

1- Qf+1

2-

1 °j+ I 1 + 1
Qt does not increase with j  and hence cannot affect A (k).

Q'. does not increase with j  and hence cannot affect A (k).

Qs can increase with / ;  the fixed point occurs one step after when it does not

j _ * I 1 **" 1
6 <?.+ j can increase with j  but is solely dependent on doing so by an increase 
via case 3 in Qs from iteration j  - I .

358

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

This case analysis shows that it is only case 3 that directly affects the number of iterations 

of the approximator functional until the fixed point. Thus, any bound on the number of

increases that case 3 can cause necessarily implies a bound on the number of increases 

that can occur in Fs . In turn, this gives the a bound on the number of iterations of FF 

until its fixed point.

For the case of k = 1, this iteration bound is the length of the longest increasing chain 

from -L in the domain of Qs . Let the length of this longest increasing chain be given by r  

for the domain of Qs . The fixed point of 5 ^  cannot be any longer than T because (a) Fs 

is monotonic so there can be no decrease through case 3 and (b) when equality occurs 

through case 3, no further increase is ever possible on any further iteration. At that point 

Qi +1 = \iQ Fg andsoFg = 6FS{FQ } by Eq 3-51. Thus for the case of k = I:

A (fc) = r

Moving to the case of k > I follows the same line of reasoning: either no dimension of it 

increases or some subset of the dimensions of Q8 increase. When no dimension increases, 

by the above analysis, the fixed point has been reached and no further increases can occur 

on any further iteration. When a dimension does increase, then it moves up one notch on 

its increasing chain. Let the length of the longest increasing chain of each domain D(. 

making up Q6 be given by 17. There are k such domains comprising the k feedback 

dimensions of .7"s . In the increasing case, at least one feedback dimension D{ increases, 

and its increase is at least one notch relative to c D . There can be at most 17 such 

increases. The same can be said for every other feedback dimension as well. The worst 

case being when every feedback dimension increases independently on a separate itera

tion. Therefore A (k) is given by:

k
A (*) = £ r (. (Eq 7-8)

i = I
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Where the domains Df are all the same, the r {. are all equal and can be given as the 

unsubscripted r . In that case:

A(fc) = lex r

In the case where the domains are all the flat Boolean domain, the longest increasing 

chain is 1 so:

A (k) = k

Q.E.D.

With the aid of this theorem, implicit causality checking is straightforward. The algo

rithm is shown in. Fully general causality analysis by this method is NP-complete [494] as 

might be expected from the formulation in terms of image computations on the reachable 

state space of the program instance.

7.2.3 The Flattened Transition-Graph

The approach taken to causality checking of NDAM programs is not distinct from the 

approaches previously presented but rather draws from either the explicit or implicit enu

meration technique as appropriate. The central problem in formulating the causality 

checking problem for NDAM networks is that the control flow paths in a step are 

obscured not only by concurrency but also by the hierarchy of the process tree. The con

struction of a flattened transition graph from the process tree addresses this problem and 

allows either of the approaches to causality checking be used directly.

The process tree is convenient and natural for the representation and execution of hier

archical control constructs. Indeed, the whole purpose of the multifunctional TCWC 

instruction is to isolate behavioral hierarchy in such a way that the operational interpreta

tion of NDAM instructions is more or less direct. ̂  The problem with the process tree for 

causality analysis is that this very hierarchy obscures the control flow paths between lev-
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implicit_causality_ch«ck(program, initial-Btataa)
{

1st I  m lnltial-atataa // a non-ampty aat of atatea 
aithar

lat Q* =  [l[ ( \ Q . Q v F { Q } )  // conputa reachable atatea
or // alternatively

lot Q* = est {program} // estimate Q* atructurally
// determine the k feedback dlmenBiona from a atructural 
// analyala of the concurrent control flow In the program
let k  = dfs {program)
let r,. be determined for each 1 <i < k  feedback dlmenalon

let Q = F ^ ^ ^  { Q * }  f ! almulate for A (k) 5 -steps
If Q la a limit point then

Q  =  F8 { Q ] and F q ,  =  c7 ^ {F q*\
the deacriptlon la causal 
return OK

elae // some elements in Q are not limit points
these correspond to noncausal loops
show a 5 -path, from q 6 Q back to a previous macrostate 
return NOT OK

>

Figure 7-12. Causality Checking by Implicit Enumeration

els of the hierarchy. Since causality is intrinsically a 5-path property, not a 5-state prop

erty, a representation that makes such 5-paths explicit is a fundamental component of 

causality checking. The following sections define a flat transition-graph representation 

which is derived from the hierarchical process tree.

A flat transition-graph approach is particularly appealing because it naturally takes into 

account the obvious intra-process control flows engendered by the TCWC instruction: con

current execution as well as the behavior of signal and exception handlers. The other ben

l. The operational semantics of the NDAM is described in Section 7.3.1 and an actual implementation 
which is faithful to that semantics is described in Section 7.5.
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efits of the graph-based formalism are that it allows for a 8-path error trace to be 

generated when an error is detected. It naturally supports the two other sorts of analyses 

that are necessary in a practical implementation. The first of these is the estimation of 

whether every individual control-thread is acyclic. This is a stronger condition than the 

necessary one which is that every 8 -path be acyclic. This latter property is required if the 

domain Ss is to preserve monotonicity, a point which is dealt with further in the domain 

definitions of the operational semantics in Section 7.3.1. The second sort of analysis is 

modularity checking as might be used in Synchronous VHDL.

7.2.3.1 The Estimate Graph

The fundamental property represented in the estimate graph is that each edge in the 

graph represents a micro-transition of the semantics. Thus the edges of the estimate graph 

have a one-to-one correspondence to elements of T8. The estimate graph flattens away the 

hierarchical control of the TCWC and replaces it with explicit edges in the flat graph repre

sentation. As such the TCWC represents more of a ‘macro’ representation for a whole set 

of transition edges out of the processes that it controls.

The Halting and Halted Estimates

Latent control flow occurs with the h a l t  instruction in a child process. On the abstract 

machine, the h a l t  instruction is defined to cease execution in the process containing it. 

Unstated are three other behaviors that must be explicitly accounted for in a flat represen

tation. The first is that upon halting, if another sibling process executed a r a i s e  instruc

tion then the halted process is killed and execution of the network continues with the 

relevant exception handler in that parent. The second is that in subsequent instants, if a 

signal occurs which is watched for in an enclosing process, then the halted process is 

killed and execution continues in the relevant signal handler of that parent. Thirdly, if in
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any subsequent instants a sibling process raises an exception then the thread is killed and 

execution continues in the handler of the parent.

The estimate graph takes this into account by expressing the halt instruction in split- 

phase form. The halt is translated into of two aspects: h a l t i n g  and h a l t e d . The 

h a l t i n g  node models the arrival of control thread onto the halt instruction. The 

h a l t e d  models the control thread remaining on the halt instruction after the first 

instant Ignoring exceptions, the only possible edge out of a h a l t e d  is one triggered by a 

watched-for signal. Figure 7-13 shows the basic h a l t i n g  and h a l t e d  pair with edges 

leading away from the h a l t e d  towards the when nodes header nodes of the signal han

dlers.

halting

I next
instant

(whan S(l)̂ ) (whan 3(1)^ (whan 3(1)̂ ) (whan S(l)^

Figure 7-13. The Split-Phase Structure of halting / halted

Raised Set Clauses

The estimate nodes such as h a l t i n g ,  h a l t e d  and others that must take into account 

raised exceptions declare control flow to exception handlers with a set of raised set 

clauses. These clauses declare the control transfer that occurs if a sibling process executes
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a raise in the instant. Each r a i s e d  clause implicitly preserves the exception priority 

by declaring which exception it handles and which it does not handle.1 Figure 7-14 shows 

the full h a l t i n g / h a l t e d  pair with the raised set clauses.

halting
raised 8(1) not ( 8(la) 8(lb) 
raised 8(2) not ( 8(2a) B(2b)

8(11) > goto 
8(21) } goto

raised 8(8) not { B(Ka) 8(Kb) ... B(Bk) > goto

next
instant handle 8(2)

handle B(K)
raised 8(1) not { B(la) 8(lb) 
raised 8(2) not ( B(2a) B(2b)

8(11) ) goto 
8(21) > goto

raised 8(8) not { B(8a) B(8b) ... B(Kk) } goto

Figure 7-14. The Fully-Loaded Structure of a h a l t i n g  / h a l t e d

I. The flatten algorithm of Section 7.23.2 ensures that the raise clauses are consistently defined according 
to the priority of the enclosing TCMC instructions
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Raise Estimate

The raise estimate corresponds to the NDAM raise instruction. It follows the form 

of the h a l t i n g  except that it also adds the information that the exception E(i) was 

actually raised. The raised set of the raise estimate is still present to resolve the priority 

of the raised exception E(i) against any others raised in the same instant. The form of 

the raise estimate node is shown in Figure 7-15.

ralaa B(i)
raiaad B(l) not { B(la) B(lb) ... B(ll) > goto
rained B(2) not { 8(2a) B(2b) ... 8(21) > goto

raiaad B(K) not { B(Ka) 8(Kb) ... 8(Kk) } goto

r~haadl® B(l)

handlt 8(2)

handla B(K)

Figure 7-15. The Priority-Based Structure of the raise Estimate

The Fork and Collect Estimates

The control flow arising from the invocation and synchronization aspects of the TCWC 

are managed by f o r k  and c o l l e c t  nodes as shown in Figure 7-16. The f o r k  declares 

a set of control threads that all continue concurrently. Additionally it declares the excep

tions that may be raised between the f o r k  and the c o l l e c t .  The c o l l e c t  waits, syn

chronizing, until all of the concurrent threads have returned. Only then does control flow 

on to the successors. In this light, the collect is a sort of “halt” in the sense that some con

trol threads will “park” at the c o l l e c t  until their siblings have completed or an excep

tion has been raised. If an exception is raised by some child then the raised edge defines 

the control flow to the appropriate handler where the threads are merged back into a single 

thread. A more detailed explanation of how the TCWC is mapped onto this structure is 

given in the presentation of the flatten algorithm in Section 123.2.
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fork lcnrar { B(l) B(2) ... B(K) >

PCD PC2) P ( 3 )

collact
raiaad E(l) not { B(la) E(lb) 
raiaad E(2) not ( B(2a) B(2b)

B(ll) > goto 
B(21) > goto

raiaad E(K) not { B(Ka) E(Kb) ... B(Kk) > goto

handla B(2)

handla B(K)

Figure 7-16. The Estimate Graph Template for a TCWC Instruction 

Signal Estimates

There are three estimate nodes that summarize the signal manipulation instructions. 

These are the e m it, u n d e f and r e q u i r e  as shown in Figure 7-17. They have the same 

function and meaning as the corresponding NDAM instruction. The estimate graph nodes 

differ only in that they allow a set of signals to be mentioned in one node, and in the case 

of the e m it no value component is mentioned.
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(— it { 3(1) (r«qoir« ( 3(1) g(2) ... 3(K)^

(u a d a f t 3(1) 3(2) . . .  S(1C) })(u a d a f t 3(1) 3(2) . . .  S(1C) })

Figure 7-17. The Signal Handling Estimates

Decision Estimates

Control flow choice is treated in two different ways in the estimate graph. The s e l e c t  

estimate summarizes control flow choice in a manner that is interpreted by the dataflow 

equations. On the other hand, the n u l l  estimate abstracts control flow choice that is not 

interpreted by the dataflow equations. In that case the control thread proceeds along one of 

the paths out of the n u l l  estimate node. Both nodes are illustrated in Figure 7-18.

7.2.3.2 The Flatten Algorithm

The flatten algorithm, shown in Figure 7-19 constructs the flat estimate graph from the 

hierarchical process tree representation of the NDAM network. The construction of the 

graph by that algorithm centers around two features. The first is the reproduction of the

Figure 7-18. The Control-Flow Estimates

367

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

non-hierarchical portions of the process tree directly in the estimate graph. The second is 

the expansion of the TCWC and its implicit behaviors into explicit edges and node annota

tions in the estimate graph.

struct BuildState {
graph — the estimate graph data structure
visited — a table mapping a basic block to its generated estimate
stack — stack of TCWC that have been called

flatten()
{

BulldState state;
state. graph = a new estimate graph
add to state. graph a start node
// Pretend there is single TCWC that calls all of
// the top-level processes at once and halts if they return
add to state, graph a fork node (with no lowered exceptions)
add an edge from the start to the fork
add to state. graph a collect node (with an empty raised set)

add to state. graph a halting node (with an empty raised set)
add an edge from collect to the halting
add to state. graph a halted node (with an empty raised set)

initialize tcwc_f rane with no when and no handle clauses 
stack.push(tcwc_frasia);
foreach process in the top-level of the process-tree {

BasicBlock bb = the first executable instruction in the process 
bb.generate(state, fork);

}
stack.pop();

>
The flatten algorithm is completed with the definition of 

BasicBlock::generate listed in Appendix B.

Figure 7-19. The Flatten Algorithm
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The Expansion of the TCWC 

The TCWC instruction is the only truly complex instruction. It uses subprocess invoca

tion to encapsulate four distinct effects:

1. The concurrent invocation of child processes.

2. The synchronization of the parent awaiting termination of the children.

3. The interruption of the children by a signal.

4. The preemption of all the children by a raised exception in a child.

For each of the child processes of the TCWC, an estimate graph is generated. In the esti

mate graph this complexity disappears as the hierarchical behavior of the TCWC instruc

tion is distributed over the of primitive actions of the estimate graphs of its subprocesses. 

Within each subgraph, the raised clauses take into account the signal and exception han

dlers instantiated by the TCWC. The conversion from the hierarchical process tree form to 

the flat estimate graph hinges on this “stacking” of signal and exception handlers. This 

stacking in turn reproduces the priority mechanisms of the instantiated signal and excep

tion handlers.

7.2.4 Checks on the Flattened Estimate Graph

The flattened estimate graph directly gives the transitions of T. for the NDAM: each 

edge in the transition graph corresponds directly to some enabled transition of the 5 -time 

semantics. Given an arbitrary NDAM program, the task at hand is the determination of 

whether the particular network has C. When C holds, the operational semantics of a net

work. presented in Section 7.3.1 is well-defined. There are three checks which establish C 

and, in sum, establish the causality of the particular network at hand.

Finiteness of 8-Time

A necessary condition for Fg to be monotonic is that be well-defined. This in turn, 

from Eq 3-23f requires that c  _ be well-defined. The necessary and sufficient condition
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for c  s to be well-defined is that there be no cycles in T5. A necessary condition for that 

property to hold is that there be no cycles in the control flow of the network. The estimate 

graph exposes such cycles since the h a l t i n g / h a l t e d  separately effectively isolates 

control flows across the macrostep boundary. Any cycles still remaining within the esti

mate graph correspond to potentially excitable cycles in Ts and vice versa. A simple data

flow computation of reaching definitions [10] is used to determine if there are any cycles: 

can any estimate graph node “reach” itself on some 8-path.

Modularity

Establishing that T& is acyclic establishes that Fs is monotonic if and only if the 

domain 2° is respected as well. This is the condition of modularity:

1. that no signal is read before it is written on any 5-path.

2. that there be only a single emission of any signal on any 5-path.

In practice either of the simulation-based causality checking algorithms is implemented to 

check for these two conditions. In the explicit case of Section 7.2.2.1 the modification is 

straightforward: a direct examination of the path s -> 8j -> 8, -> ... -> 8^ -» t is made. 

The modifications necessary for the implicit case of Section 12.2.2 are a bit more subtle 

but merely involve defining the domains so that they contain an element T as per Figure 3- 

19. The T denotes “was redefined” when found on a signal at the end of a macrostep. The 

multiple assignment of a signal results in a value of T.

Causality

Finally, with the finiteness and modularity of 8-paths established the causality checking 

algorithms, either explicit or implicit ensure that there is a well-defined state-dependent 

partial order from all reachable states Q e  Q*.
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12.5  Focus

In this section, the causality checking problem was defined. Two approaches to causal

ity checking were presented: the explicit and implicit algorithms respectively. These algo

rithms were presented for the case of a general image semantics where Fs was given. 

Since Fs for the NDAM is not directly obvious from the hierarchical process tree repre

sentation, a flattening algorithm was reported that produced a flat transition-graph repre

sentation from the hierarchical process tree of the NDAM network. This representation 

can support either the explicit or implicit causality checking schemes.

73  The Semantics of the Machine

The presentation of NDAM instructions has so far has been informal and intuitive in 

nature. The intent was to present the material form of the assembly code notation with the 

formal definition of their microstep behavior being deferred to a later point. Two different 

semantics are defined for the NDAM in this section. The first is an operational semantics 

which has the attribute that it defines one possible implementation scheme for interpreting 

NDAM instructions. The denotation of the operational semantics is a runtime system 

implementation. The second semantics is the transition relation semantics which has the 

attribute that its denotations are states and transition relations as per the 5-time microse

mantics of Section 3.4.3.

7.3.1 The Operational Semantics of 5-Time

The operational semantics is defined by a particular runtime system implementation. 

This is depicted in the diagram of Figure 7-22. The non-abstract domain Mop is the set of 

all possible runtime instances with a certain style with the actual domain definitions 

remaining only intuitively defined for this presentation. As well the projection n  from the 

domain Mop of runtime system into the fully abstract semantics M = (Q, T) is left intu

itively defined. As might be expected, the definition of n  substantially amounts to ignor-
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ing the implementation artifacts used to implement 5-steps control flow, synchronization 

and completion.

s
L = NDAM m  = f Runtime

x op I System
\

\
\

s
\

\
\

A  T
M = (Q, T)

Figure 7-20. The Operational Semantics of the NDAM

73.1.1 The Literal Fixed Point Method

The key idea behind the runtime system is that the code body literally implements the 

approximator functional of the NDAM network. The repeated execution of this code 

body converges after a number of steps at the relative least fixed . This convergence 

is based on a principle of idempotence. namely that there arc certain synchronization-type 

structures within it which if executed once can be executed an arbitrary number of times. 

All that is required of the implementation is some means of ensuring idempotence and of 

detecting when the point of idempotence has been reached. This method is here called the 

literal fixed point method. An implementation of this semantics is described in detail in 

Section 7.5 so the presentation here is restricted to describing its design from a semantic 

perspective: why it works, deferring the declaration of what it is to the later presentation.

The analogy between the NDAM network and the approximator functional analogy 

means that two properties must hold. The first is that the state of the NDAM network at
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the end of the macrostep must be a fixed point: repeated evaluations of the network must 

not result in any further progress. Secondly, the state of the NDAM network within a mac

rostep represents an approximation of the completion towards this fixed point. Clearly the 

state of a network is defined by the state of its processes and the status of the signals so 

these properties must be supported on each process and the set of signals.

73.1.2 A Process’ State

A process’ state is summarized in its program counter and whether or not it is done or 

complete for the macrostep instant. A process which is done has clearly reached its fixed 

point; it need not be evaluated any further in the instant. A process may become done for 

the instant but be restarted by its parent process. These two invocations represent distinct 

instantiations of the child process within the parent’s lifetime. So long as a child is never 

not done when a parent is done the uniqueness of the fixed point is guaranteed.

The second aspect of a process is the notion of its approximate completeness within the 

instant. This approximation is summarized in the process’ program counter which is 

defined in a non-fiat domain with the non-trivial internal ordering defined by Eq 3-22f. 

Thus a NDAM process is well-defined when its control flow paths in the context of its use 

in the network is faithful to the ordering of Eq 3-22f. The necessary condition for this to 

be true is that there be no cycles in the domain Ss of Eq 3-21.

For the general case of Eq 3-22f, Ss need not be a Cartesian product of Spc 

and SDATA; it is existentially declared with its . This assumption drastically simpli

fied the development in Section 3.4.3. In practice however, S8 is not existential, rather it is 

a Cartesian product, Ss = Spc x SDATA, of the non-flat domain Spc of program counter 

values and the Cartesian domain SDATA of the register values. A sufficient condition for 

fidelity to Eq 3-22f is that r= be well-defined. This is another way of saying that the
^PC

uninterpreted1 control flow paths are loop free. Since Spc consists of the combination of
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program counters of the concurrent processes, the determination of when the Spc domain 

is well-defined is non-trivial. The causality-check test of Section 7.2 verifies that Spc is 

well-defined for a given NDAM network instance.

73.1.3 Outputs

Outputs in the operational semantics are a Cartesian domain as defined in Eq 3-24. The 

extra requirement for the implementation is an explicit way to test for 1  on a signal. In 

the implementation of Section 7.5 this is accomplished with an extra bit for each signal 

recording whether the signal is defined (yet) or not.

It must be stressed that this extra bit is an implementation artifact of this particular non

abstract semantics, the literal fixed point method, which is expected to be implemented in 

software. The extra signal status bit is explicitly not a requirement of synchronous seman

tics. This should be clear from the presentation of 5 -time in Section 3.4.3 and the 

microsemantics of synchronous languages in Section 4.3.4.4. As well, there exist non

abstract semantics that do not use an explicit representation for _L are the lookup-table 

scheme and the hardware semantics used in other Esterel compilers. These are reviewed 

for completeness in Section 7.5.3.

The test for the non-definition of a signal allows for the synchronization of the 

require' instruction operations to be defined. At a higher level, the semantics defines 

that a ‘require’ instruction blocks just when a signal has the value ± . This ensures that 

an undefined signal is never read and thus the semantics remains faithful to Kahn’s data

flow conditions. This has the unexploited but significant effect of allowing ‘require’ 
barrier instructions to be removed when it can be shown that signal read operations (e.g. a 

‘present,’ ‘presence,’ or ‘selection’) never occur before a signal assignment

1. i.e. ignoring the contributions of data-flow. Thus whether the consequence of I f  condition is invisible in 
sort of analysis.
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(e.g. an ‘emit’) in any constructed scheduling of the network.

73.1.4 Synchronization

Each NDAM instruction manipulates the program counter in some way. Most merely 

compute some register-transfer operation and assign the program counter to the successor 

instruction. These instructions increase relative to c  .In  contrast, there is a class of*PC
instructions which increase relative to c  only when certain conditions about 2°JpC
obtain. These, by definition, are the class of synchronization instructions and they are dis

tinguished by effectively blocking the execution of a process in 8-time until the definition 

of the mentioned signal becomes available. This class is typified by the ‘require’ but 

there are aspects of it in the ‘wait’ and TCWC as well. The key to the synchronization 

instructions is that they block in 8-time awaiting a signal’s definition: either its presence 

or absence. Synchronization against the definitive presence or the definitive absence is 

then exclusively restricted to the macrostep level (e.g. Esterel’s do.. .watching).

7.3.1.5 Completion

The other significant aspect of the operational semantics is the treatment of completion: 

the halting of a process, or the termination when it exits. The relevant instructions are 

“halt,’ ‘exit’ and ‘wait’ (which is best thought of as a ‘halt’ and ‘require’ 
merged together). These instructions implement the idempotence aspect of the network. In 

the framework of domain theory, the program counters of completion instructions are ele

ments of the domain ST as used in Eq 3-23f. The halting instructions are operationally 

faithful to Eq 3-23f by not incrementing the program counter and at the same time declar

ing the process to be done. Further invocations of the process have no effect.

73.1.6 Focus

The previous sections highlighted the design of the a non-abstract semantics for the
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NDAM. These elements are exploited in the runtime implementation described in Section 

7.5. The presentation of that section explicitly enumerates the operational behavior of all 

the NDAM instructions. Additionally the single extra-network runtime routine, e v a l, 
which makes this scheme feasible is shown.

73.2 The Relational Semantics of 5-Time

The transition relation semantics of 5-time has denotations which are states and transi

tion relations as illustrated in Figure 7-22. The construction of elements of this domain 

follows directly from the computational semantics of 5-time in Section 3.4.3 coupled with 

the process tree flattening procedure defined in Section 7.2.3.

/. Temporal Analysis
By design, the 5-time of Section 3.4.2.1.

2. Domain Analysis
By construction, the domains of Section 3.4.2.2.

L. For simplicity, the backward case is elided from the following enumeradon. The backwards case follows

SSL = NDAM
\

\
\

\
\ n

\
\

s

Figure 7-21. The Relational Semantics of the NDAM

The elements of the computational semantics are:1

directly.
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3. The Primitive Transition relation Ts
The flattened flow graph from Section 7.2.3 is the transition relation Ts .

4. The Primitive Image Functional Fg
A NDAM instruction takes one 5-step:

5. The Approximator Functional 
The standard definition:

= i-Q- (3c.fi (c) a  r g(c, n ) )  [n/c]

^ = X F . X Q . F S {Q}
6. The Approximated Image Functional F

The fixed point relative to a single “first step:” F = \iF 3F8,
more importantly with absorbing end conditions: FQ {Q *+1} = (Q} ^  .

7. The Projection IT to Full Abstraction 
As stated in Section 3.4.3.7.

8. Observations
Observations follow directly from those stated in Section 3.4.3.8.

The key element here is the extraction of the microtime transition relation T§ from the 

operational definition. Having been extracted, the semantic objects can be manipulated 

directly and in their own right. For example, Ts can be subjected to various forms of 

abstraction and optimization as suits the needs of its material representation. Abstraction 

and optimization opportunities can appear along the axes of control flow, synchronization 

and 5-step paths. The estimate graph of Section 7.2.3.1 can be seen as an instance of these 

first two sorts of abstraction since it abstracts away the data-centric operations leaving 

only a “may” estimate of the true control flow and inter-process synchronization patterns.

The extraordinarily fine granularity of Ts can be addressed from this vantage point as 

well. r 5 represents the set of single steps that can be taken in 5-time. A transition 

relation T,g which consists of the two-step paths in 5-time is defined as:

In fact, this coalescing of 5-steps into 5-paths can be carried on arbitrarily many times 

subject only to the practical size restrictions of the material representation of the transition 

relation TkS. Of course in the limit, this process results in “compiling away” all 5-steps

T 2s ( c > n ) =  3 L T s  ( c > *’) A T8 ")
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which is of course exactly the definition of the fully abstract transition relation. Thus there 

is some length n at which TnB = T  and full abstraction is reached.1 In fact, this sort of 

coalescing of microstep transition relations into the larger multi-step version is exactly 

what is being accomplished in the quantification ordering schedule of cr-time from Sec

tion 3.4.4.

7.3.3 Focus

The two previous sections have presented the semantics of the NDAM. The first seman

tics was operational and defined one particular implementation strategy. The second 

semantics was relational and defined the non-abstract macrostep image computation as a 

series of microstep image computations which were fully abstract in 5-time. This con

struction neatly sidestepped the problem of determining if the operational and relational 

semantics were the same: they are necessarily the same because one was derived from the 

other in a lossless transformation (the flattening procedure of Section 7.2.3).

Reduced to its essence, the claim here is that the method used in this section of extract

ing the transition relation semantics from the operational semantics is the only well- 

defined way to interface a high-level language to formal verification. This is the essence 

of Gordon's WYSIWYV aphorism: “What You Simulate is What You Verify” [299|. In turn, 

the relationship of a particular non-abstract semantics to the fully abstract case is defined 

by the projection n . The RMC Barrier Theorem states the conditions that must apply for 

that projection to be well-defined.

In contrast, other methods of defining the “verification semantics" of a language neces

sarily introduce some syntax-based interpretation of the language, or arbitrarily-defined 

synthesis step based on a language subset. Examples in this regard abound. The Synchro-

t . The length of a 8-path is state-dependent, however the absorbing end conditions of Figure 3-15 effec
tively stretch out all 5-paths to have infinite length so no information is lost in this construction.
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nous VHDL subset is one example which is treated directly in this work, in Section 6.3.2. 

Another example is the syntactic subsetting of Verilog’s RM C/R8M8CS semantics for 

embedding into the RMC/vacated semantics of the generalized gate model [49] [1641.

7.4 High-Level Language Compilation

The features of NDAM make the compilation of the relevant source languages rather 

straightforward. This section presents the compilation recipes for several languages. All 

the compilation chains are as shown in Figure 7-22. A runtime that supports the opera

tional semantics of 8-lime is presented in Section 7.5.

Source
Text

Microscmantics

Machine
Code

Translation
Recipe

NDAMASTs

Abstract
Syntax
Trees

Transition 
Relations,

Figure 7-22. The Two-Level Approach with NDAM Assembly

7.4.1 Esterel

Given that the Esterel source code has been parsed then the recipe of Figure 7-23a. can 

be used to produce a NDAM representation of an Esterel program. The conversion accord

ing to the rewrite rules proceeds by recursive descent along the abstract syntax trees pro

duced in the front-end of the compiler. No attempt at optimization or (hard) register

2. This has been referred to as the "...well, then we won't support that" method [93] [47] [49].
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allocation is performed at this early stage and the Esterel statements copymodule or run 

are treated as purely syntactic objects (i.e. they are expended in-place) as per the formal 

semantics of Esterel. An implementation of this compilation scheme exists.

Esterel Statement NDAM Instruction
halt halt
nothing nothing
exit exit
exit TRAP raise E(TRAP) R(pure)
exit TRAP(exp) compute exp into temporary R(tO) 

raise E(TRAP) R(tO)
VAR :■ exp compute exp into temporary R(to) 

R(VAR) s* R(t0)
emit SIG emit S(SIG) R(pure)
if exp then 

statementl 
else

atatement2 
end If

compute exp into temporary R(t0) 
If not R(tO) goto L(sl) 

generate code for statementl 
goto L(next)
L(s2):

generate code for statament2 
L(next):

present SIG then 
statementl 

else
statement2 

end If

require SiSIG)
present not S(SIG) goto L(sl) 

generate code for statementl 
goto L(next)
L(s2):

generate code for atatement2 
la (next):

await Immediate SIG require S (SIG)
present S (SIG) goto L (around) 
wait S (SIG)
L (around):

await S (SIG) wait S (SIG)
Figure 7-23a. A Recipe for Compiling Esterel into NDAM Assembly

7.4.2 Synchronous VHDL

This same compilation scheme can be used for VHDL to implement the Synchronous 

VHDL subset. Such an implementation was described in previous work [47). As with the 

Esterel compiler the translation scheme follows traditional intermediate code generation 

practices to transform the abstract syntax trees into NDAM assembly codes. Since that
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Esterel Statement NDAM Instruction
loop L(loop):

statement generate code for statement
and loop goto L(loop)
repeat H times com putes into temporary R(tO)
statement L(loop)t

end repeat If not R(tO) goto L(done)
generate code for statement 
R(tO) :■ dec R(tO) 
goto L(loop)

L(end):
statementl ; generate code for statementl
statements ; generate code for statement!
statements generate code for statements
I try

statement! call P(chlld-l) 1(0);
II call P(child-2) 1(0);

statement! •  •  •

II call P(child-N) 1(0)

II foreach statement-1 add new child processes
statements process P(child-i )  i s

1 interface 1(0) MO)
MO) t

generate code for B ta ta m a n t - l  
end process P(child-i)

run M [substltutlon-llst] look up module S
translate its sole instruction while

copymodule M [substitution-list] performing the substitutions in 
B u b a t l t u t l o n - l l a t

Figure 7-23b. A Recipe for Compiling Osterel into NDAM Assembly 

transformation is straightforward and is described elsewhere, it is not presented here 

explicitly. *

As mentioned in Section 6.3.2 the discrete event semantics of full VHDL is RMC so 

the Synchronous VHDL subset has a modularity checking obligation in addition to a cau

sality checking obligation. Also, as mentioned there, certain process network structures 

that have an existing topological order to them (e.g. combinational logic networks) are

1. In any case, were it presented, it would substantially follow Figure 7-23 with the only difference being 
the use of VHDL syntax in the left-hand column.
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Esterel Statement NDAM Instruction
var VAR1 :■ axplz ty p e in try
statement call P(child) 1(0)

end var
add a new child process 
procaas P(child) Is 
Interface 1(0) L(0) 
register R (VAR1) T(type)
M O ) :

compute e x p l into temporary R(t0) 
R(V2UU) R(t0)

generate code for s ta te m e n t  
exit
end process P(child)

signal SIGi ty p e In try
s ta te m e n t call P(child) 1(0)

and signal
add a new child process 
process P(child) Is 
Interface 1(0) L(0) 
signal S(SIG) T(typ e)  
MO):
undef S(SIG)

generate code for statement 
exit
end process P(child)

Figure 7-23c. A Recipe for Compiling Esterel into NDAM Assembly 

naturally modular and causal. However, failing the sufficiency conditions defined in Sec

tion 6.3.2.4 of 1) static sensitivity lists for all processes and 2) acyclic process network 

structure, some semantics-based check must be formulated to ensure that the admitted 

VHDL programs are M as well as C. The causality check defined in Section 7.2 is suit

able in this regard because it necessarily checks that modularity is not violated: that 1) sig

nals are singly assigned across 5-time and 2) no signal is ever read before it is written 

across 6-time.

7.4.3 (Synchronous) SpecCharts

In addition to Synchronous VHDL one could also posit the existence of a “Synchronous 

SpecCharts.” In fact. Gajski et ai give an explicit transformation from the SpecCharts lan

guage to standard VHDL.^ There is no theoretical or practical reason why this translated
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Esterel Statement NDAM Instruction
trap TRAPi ty p e In 

statement 
handle TRAP do 

statements 
end trap

try
call P(handle) 1(0)

add a new child process for the exception handler 
process P(handle) is 
interface 1(0) L(0) 
exception E(TRAP) T(type)
L(0) : 
try
call P(body) 1(0); 

catching
handle B(TRAP) goto L(l) 

goto I>(2)
L(l) s

generate code for statements 
L(2) s 
exit
end process p(handle)
add a new child process for the body 
process P(hody) 
interface 1(0) L(0)
L(0) s

generate code for statement 
exit

end process P(body)
Figure 7-23d. A Recipe for Compiling Esterel into NDAM Assembly

VHDL or even the original SpecCharts form itself could not be subjected to the same 

modularity checking and causality checking that Synchronous VHDL undergoes.

While no attempt has been made in this work to formulate a “Synchronous SpecCharts” 

variant, the possibility is so obvious that it is worth stating explicitly. Indeed a Synchro

nous SpecCharts, with its dual graphical/textual representation would provide the features 

hoped for in the potential marriage of the textual description style of Esterel and the (syn

chronous) StateChart-style of Argos.1

1. See Gajski et a t  [2771. Chapter 5.
I. As mentioned in Halbwachs [3201.
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7.5 A Runtime Implementation^

From the operational semantics an implementation based on dynamic potential set com

putation follows rather directly. All that needs only to be constructed is a runtime system, 

data structures and a scheduler, which dynamically computes the relevant potential sets 

and ensures that no NDAM instruction is executed before its necessary signals are 

defined. Such a runtime system does not check causality but rather depends on the fact 

that the network and process tree upon which it operates is RMC.  This must have been 

previously verified.

In the design of the runtime system there are two issues:

1. how to organize the runnable processes and.

2. how to represent and compute the potential sets.

The technique used here is to take advantage of the fact that both pieces of information 

can be mostly determined from a static analysis of the network. The idea is to encode as 

much information as possible in tables or within the processes' code bodies and to per

form only minor corrections at runtime.

In the first case, the runnability of processes is reported back to its caller by a status 

code returned by the function which implements a process' code body. That status code 

indicates one of four conditions: whether the process has halted. has exited and is now ter

minated. is synchronizing awaiting more signals to become defined or has raised an 

exception.

In the second case, a signal’s potential for emission is estimated based on information 

which is encoded in tables generated at compile-time. These tables are indexed by a pro

l. This implementation scheme was originally introduced in Edwards’ prototype Esterel compiler [246]. 
This scheme can also be seen to have substantial similarities with Druisinsky and Harel’s “hardware seman
tics” of StateCharts [241] [2421.

384

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

cess’ program counter. The only runtime action needed therefore is the aggregation of this 

information across all the actively running processes in the process tree. Code generation 

is thus intrinsically tied to the runtime scheduling system and the interactions required 

between processes and the runtime system. The following sections describe the code gen

eration templates and the NDAM Runtime System (NRS).1

7.5.1 Code Generation

The emulation of NDAM at the machine level is straightforward save for the control- 

type instructions such as halt, exit, wait and TCWC. With careful code generation, 

the implementation template for many NDAM instructions can correspond directly to one 

or more machine instructions (e.g. goto, if, :« , unary and binary operations).For the 

control-type instructions however, like halt. exit, wait or TCWC, the virtual program 

counter (pc) of the process has different properties that do not directly relate to those of 

the machine-level pc. For example, in halt and exit, the virtual pc is left unmodified, 

thereby indicating that the fixed point has been reached relative to that process’ execution. 

The code templates for the NDAM instructions are shown in Figure 7-24.

Of the control-type instructions, the TCWC is the most complicated because it must 

manage the execution of its child processes. Its code template is broken out and shown in 

Figure 7-25. In practice the implementation of TCWC is complicated enough that it is kept 

in a separate library; it is not inlined. As such the TCWC forms a sort of crude dynamic 

scheduler for the NDAM subprocess tree. Fortuitously, the scheduling and recovery algo

rithm shown in Figure 7-25 is generic enough that it can be table driven thereby saving on 

implementation code size while remaining highly general.

I. The full implementation of NRS can be found in Appendix D.
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NDAM Instructions NDAM Runtime Action Notes
bait return HALTED pc remains here
•xlt return HALTED pc remains here
raise B(i) R(j) return RAISED pc remains here
require { S(i), ... } i f a n y S ( i )  is unknown 

return SYNCING
else
pc :* pc + 1

wait { S(i), ... > phasel:
pc i* phaae2 
return HALTED

There are two phases 
to the wait instruction.

The first phase is enter
phase2:
if any S ( i ) is unknown 
return SYNCING 

else if no S ( i ) is present 
return HALTED

else
pc :■ pc + 1

ing the wait and the 
process halts.

The second phase 
occurs only in subse
quent instants. It syn
chronizes until all 
signals are known and 
then is either HALTED 
or continuing on.

try
call P(l) 1(0); 
call P(2) 1(0);

See Figure 7-25 There are three phases 
to TCWC.

•  e e

call P(N) 1(0); 
watching
when C(1) S(l) goto L(sl): 
when C(2) S(2) goto I>(s2);
•  •  •

when C (K) S (K) goto L (sK); 
catching
handle E(l) goto Ii(el); 
handle E(2) goto L(e2);
handle E(K) goto L(eK)

Any other NDAM instruction pc assigned as per the normal 
opcode flow

Either the instruction 
assigns into pc directly 
or pc :* pc + 1

Figure 7-24. Templates for C Code Generation from NDAM Assembly

7.5.2 The Runtime System

The key to the runtime system is that each process’ code body is idempotent within the 

macrostep. It can be repeatedly executed until all of its children have reached a stable 

point (this is the fixed point of 5-time). This can be seen in the rules for e x i t ,  h a l t  and
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w a i t  in Figure 7-24. The h a l t  and e x i t  reach a fixed point by virtue of not assigning a 

new pc value. The TCWC indirectly reaches a fixed point when its child processes reach a 

fixed point. The TCWC is thus the driver for all of its children in that it delegates its reeval

uation to its children, until either they become stable, or an exception is raised in one of 

them. At the top-level there is a network-level EVAL algorithm which simply evaluates the 

top-level process until it indicates that its no longer runnable. This is the execution of a 

network across 8-time to its fixed point The following sections describe EVAL and dem

onstrate its potential set evaluations.

7.5.2.1 The Network-Level EVAL

The network-level EVAL is the outer loop the scheduler. All it does is repeatedly evalu

ate the top-level process until no more progress can be made anywhere in the network. 

After each reevaluation the outstanding signal potentials are examined to determine which 

signals can never occur in any future 8-step of the current macrostep. For signals that are 

EMITTED, having been emitted but not yet marked as PRESENT, the state is changed to 

PRESENT. ̂ For signals that are UNKNOWN, the state is changed to ABSENT. The evalua

tion process is repeated. Ultimately there will be no further information about signal pres

ence or absence that can be generated: the fixed point will have been reached in a finite 

number of iterations. At that point, the evaluation loop of step 4 terminates and the mac

rostep is finished. The network-level EVAL algorithm is shown in Figure 7-26

1.5.22 Static and Dynamic Potential Sets

The potential set of a network is the union of the potential sets of the runnable process. 

In turn, the potential set of a process is the potential set, POT, associated with its program 

counter. Fortunately the potential set associated with each program counter is a mostly

l. This trick, making explicit the distinction between EMITTED (having executed the emit operation) and 
PRESENT (formally recognizing and marking the emission) was first proposed by Gonthier [2951.
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i f  ( this process is stab le) 
return STABLE;

■witch (phase) { 
case TAIL:

assign each subprocesses’ pc at the label o f  its interface I 
initialize any signal counters in. w hen clauses 
m ark the exceptions o f  the TCWC as LOWER 

case SYNC:
/ /  This is the intermediate SYNCING phase 

case HEAD:
If ( any o f  the guarding signals is UNNKNOWN) 

return SYNCING 
foreach guarding signal that is present.

decrement its counter (if any) 
foreach when clause {

If (signal whaa.S is present and when.C has expired) { 
pc * when.pc, 
return CONTINUING

)
>

)
foreach subprocess {

(re)call it.
noting if any returned RAISED. STABLE or SYNCING

I
If (any  returned SYNCING) { 

pc " pc'SYNC 
return SYNCING

}
if (any returned raised) {

if (raised-exception depth > the process's depth  in the process tree) { 
/ /  process.pc stays the same 
return RAISED;

} else {
foreach handle clause (

if (exception handle.E was ra ised ) { 
pc = handle.pc; 
return CONTINUING;

}
}

>
>
I f ( any returned s tab le ) { 

m ark this process as stable too 
pc = pc'TAIL; 
return STABLE;

>
pc => pc+1 
return CONTINUING;

Figure 7-25. The Code Template for the TCWC 
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EVAL(network)
{

1. mark all processes as not STABLE
2. read input signal values and mark their presence or absence
3. mark all other signals as 'UNKNOWN'
4. do {

s - EXEC(P[0].code); 
clear all signals as having no potential 
MARK(P[0]); 
for all signals S (11 {

if (! S[i].potential) {
if (S[i].presence ■■ EMITTED)

S[i].presence - PRESENT; 
if (S[i].presence ■■ UNKNOWN)

S[i].presence - ABSENT;
}

}
} while (8 !- TERMINATED);

5. write all output signals to the environment
)

Figure 7-26. The Network EVAL Algorithm

constant function of the program counter. In particular, it is entirely unrelated to the 

potential sets of sibling or parent processes. This means that for most pc locations, the 

potential set computation can be implemented with a simple table lookup. Such tables can 

be computed at compile-time with simple data-flow estimation computation. As such the 

tables hold may information.* The example shown in Figure 7-27 illustrates the static 

property of most potential sets.

There is one special case where the set of signals potentially emitted by a process is not 

uniquely associated with its program counter. That case, predictably, is the ever-trouble- 

some TCWC. An example of this sort of situation is illustrated in Figure 7-28. There, the

I. Hence the name potential set: the set is the set of signals which may potentially be emitted in a future 
8-step of the instant.
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type t(bool) 2 
signal 3(1) c(bool) 
signal 3(2) c(bool) 
signal 3(3) c(bool)
L(l): R(l) :- sslsction 3(1)
L(2) I if R(l) goto MS)
LO): R(2) :» R(l) *■ R(2)
M4>: eait 3(2) R(2)
1.(5): goto Ii(9)
MS): eait 3(3) R{1)
1.(7): wain 3(1)
1.(8): goto L(l)
L(9): halt

Figure 7-27. An Example of Static Signal Potentials 
POT set for the TCWC at location L (1) depends on the state of its child processes P (1)
and P (2). The variance is described by the table which accompanies the figure.

In the case of a process whose pc is currently at a TCWC has several possibilities for 

future behavior within the instant which are enumerated in Figure 7-29. Most depend on 

what happens in the children, though some do not.

1. The children can execute more and emit more signals and then all of 
them can halt without exiting.

2. The children can execute more and emit more signals and one of them 
could raise an exception.

3. The children can execute more and emit more signals and all o f them 
can exit. The TCWC continues on to its sucessor instruction.

4. A signal that the TCWC is guarding against could occur. The TCWC con
tinues on to the signal’s handler.

Figure 7-29. The Reasons for Variance in POT at a TCWC

73.2.3 The MARK Algorithm

The major aspect of the dynamically-iterated fixed point technique is the estimation and 

marking of signals which will never occur in any future 8-step of the instant. In the EVAL 
algorithm this determination is made by the HARK algorithm which is shown in Figure 7-

390

POT Label Instruction

3(2).3(3) Ml) R(l) :• selection 3(1)
3.(2).3(3) M2) if R(l) goto MS)
3(2) M3) R(2) :• R(l) ♦ R(2)
3(2) 1.(4) •ait 3(2) R(2)
0 M5) goto L(9)
3(3) M«) •ait 3(3) R(l)
0 L{7) wait 3(1)
2(2).3(3)
3(2).3(3) MS) goto Ml)
0 M9) halt
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^  A TCWC with a dynamic POT set. ^

S(ol)
S(o2)
3 ( 0 3 )

S(o4)
signal S(o6 )

S(o7
8 (0 8 )

process P(0) is 
type t(bool) 2 
constant R{1) t(bool) 
signal 3(11) t(bool) 
signal S(i2) t(bool) 
signal 3(13) t(bool)

t(bool) 
t(bool) 
t(bool) 
t(bool) 
t(bool) 
t(bool) 
t(bool) 
t(bool)

exception E(1 ) T(:
MO) 1 null 
Ml): try

call P(l) 1 (1 ); 
call P{2) 1(1); 

watching
when 3(11) goto L(4) 

catching
handle E(il) goto 1(5)

L(2): emit 3(ol) R(l) 
1.(3): halt
L(4): emit S(o2) R(l) 
L(5): goto M l )
1.(4): emit S(o3) R(l)
1.(5) 1 halt
end process P(0)
process P(l) is 
interface 1 (1 ) L(0 ) 
1.(0): emit S(o4) r(l) 
L(l): wait s(i2 )
L(2): emit S(o5) R(l) 
1.(3) : wait S(i2)
1.(4): goto L(2)
process P(2) is 
interface X(l) L(0 ) 
1.(0): emit S(o7) r(l) 
Ml) : wait s(i3)
L(2): emit S(o8 ) R(l) 
1.(3): wait S(i3)
L(4): raise E(l) R(l) 
end process P(2)

Network
POT

Process Locations and POTs

P(0) P(l> P(2)
S(o4),S(o7) MO) S(o4). S(o7) n/a n/a n/a n/a

S(ol), S(o3), S(o5). 3 (0 8 ) M l ) S(ol), S(o3) M l ) S(o5) M l ) S(o8 )
3(ol). S(o3).S(o4) M l ) 3(ol).S(o3) M3) S(o4) M3) 0

Figure 7-28. An Example of Dynamic Signal Potentials at a TCWC 
30. It uses two compile-time generated tables which are associated with each program

counter location:

• U, the potential set strictly within the process.

• C. the children below the process at pc (is vacuous if not a TCWC).

The C table is empty except for TCWC locations in which case it holds pointers to the
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tables for the children mentioned in the TCWC. In that case, the MARK algorithm recurs.

MARK(process)
{

1. if the process is STABLE
return;

2. foreach signal s in process.U[process.pc] {
s.potential » TRUE

}
3. for child process p in process.C[process.pc] {

MARK(p)
>

}

Figure 7-30. The MARK Algorithm

7.5.3 Other Schemes

The direct interpretation of NDAM instructions by the method just presented takes 

advantage of the existence of an observable fixed point in the network’s execution. Within 

each instant the network is repeatedly executed until no further progress can be made. 

Thus the operational semantics has a direct analogy to the computation of the fixed point 

which defines a macrostep. This scheme, which can loosely be called the literal fixed 

point method, is neither the first nor the only implementation scheme for imperative syn

chronous semantics. There are two other methods which have been developed for the 

Ksterel language. *

Direct Interpretation of the Process Algebra

The earliest implementation scheme for Hsterel, due to Cosserat [207], was the explicit 

rewrite of Esterel programs, interpreted as a process algebra. In the process algebra view 

the 8-steps are individual rewrites of the program according to a sort of “event derivative” 

operator. The macrostep is. as per the semantics, the fixed point of these 5 -step derivative

1. The historical development of Esterel is summarized in the dissertations of F. Mignard [525] and 
F.-X. Fomari [264],
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operators. This scheme was made concrete in the Esterel vl compiler. Interestingly, while 

this is not a deliverable implementation scheme, the process algebra approach has again 

attracted recent interest in conjunction with bisimular minimization of systems described 

in Esterel [228].

Compilation to Automata

The next advance in implementation was arrived at when it was realized that the finite 

set of program derivatives could be encoded efficiently in the form of control automata 

which governed the execution of elements of action tables. The general style of such 

automata-based implementations are depicted in Figure 7-32. Implementations in this 

form were completed by Couronnd [81] [213] and Gonthier [295] becoming the 

Esterel v2 and v3 compilers respectively. These compilers transform the program source 

text into intermediate forms which are then converted into an “host” language such as C, 

Ada, Lisp and the like. Supporting the automata style of implementation are the two inter

nal representations oc and i c  [577]. The oc code is a flat representation of the control 

automata and action table while the i c  code provides a hierarchical and instruction-ori

ented representation of the program. The operational definition of the automata represen

tations are well-defined in the mathematical sense, however the actual implementation is 

often problematic because the control automaton suffers the same state explosion prob

lem; the control automaton is represented explicitly in tables in this implementation.

Compilation to Circuits

More recently a “hardware semantics” has been developed for Esterel [76] [78] [264] 

[525]. In this implementation style the control automaton is represented in the form of a 

generalized circuit that computes the successor state from the current state as depicted in 

Figure 7-32. This style is distinct from the automata style where the successor state is 

declared in a table. Whether this circuit is implemented in the form of transistors or
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At

A5
AJ

A2

At A5

A l:
v y 
exmt02rx> 
call Rv)

A i
t OXr )

AJ:
401

A4:
a a iO U x ) 
catiFfx) 
call v v + t

AJ:
east OS

Control Automaton Action Table

Figure 7-31. Implementation of Esterel in Automata

machine instructions is less important than the fact that the state explosion problem is 

avoided.

One interesting property of the control circuit is that the combinational logic may have 

internal cycles due to the direct translation from the source level. These cycles correspond 

to potential causality problems in the sense that certain kinds of the combinational cycles 

result in well-defined global behavior while others result in infinite oscillations. Causality 

checking thus becomes, in this formulation, the question of whether the cyclic combina

tional network has a well-defined behavior. Cyclic networks with well-defined global 

behavior are said to be well-caused. Algorithms and data structures to represent and iden

tify well-caused networks have been proposed by Malik [494] and Burch et al. [142].

7.6 Review

An abstract computational model called the Nondeterministic Abstract Machine has
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Al:
v - = x * y  
coat C2(x) 
call Ffv) 

A£
emuOJfv)

_

emu 01

esatO40t)
caU Rt)
caar

A5: 
east OS

Control Circuit Action Table

Figure 7-32. Implementation of Esterel in Circuits 
been presented. The NDAM assembly code was shown to be suitable for use in imperative

synchronous language compilers and to this end compilation schemes were shown for the 

synchronous language Esterel and for the synchronous subset of VHDL (Synchronous 

VHDL). Additionally it was posited that a synchronous subset of the SpecCharts could be 

formulated along the same lines. It was pointed out that the nondeterminism of the NDAM 

is strictly selection nondeterminism. Nondeterminism is potentially important in the for

mal verification context as an abstraction mechanism so long as it preserves modularity. 

Selection nondeterminism preserves modularity and so is compatible with the RMC 

required for synchronous language semantics.

Because all non-abstract synchronous semantics are RMC and all necessarily have a 

causality checking obligation since time must run forward in any practical implementation 

scheme. NDAM networks are no exception to this rule. The causality checking problem 

has been posed in the context of an arbitrary NDAM network with the aid of an Estimate 

Graph. The Rattening Algorithm transforms the hierarchical NDAM network into a flat 

Estimate Graph where the concurrency and control flow ordering in the network are made
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explicit. Using this representation, the causality checking algorithm was defined. That 

causality checking algorithm also had the benefit of verifying modularity and so could be 

used to identify the synchronous subset of RMC semantics such as the discrete event 

semantics of VHDL or Verilog.

Working under the assumption of admitting only instances where RMC holds, the oper

ational and relational semantics of the NDAM networks were defined. These semantics 

drew heavily from the computational microsemantics of 8-time defined in Chapter 3. In 

the relational realm, the denotations of each NDAM instruction are a transition relation 

and the definition of a macrostep is exactly the least fixed point, relative to a single 5-step, 

of the image approximator functional implied by the NDAM network. There is the obvi

ous projection to full abstraction defined by ignoring the intra-instant instruction execu

tions and focusing directly on the states of the network as a whole at the fixed points (just 

when it is stable).

Based on the operational definition of the NDAM, a runtime system was defined that 

dynamically schedules the processes in the NDAM network in a manner which is consis

tent with causality and modularity. The runtime system, encapsulated in the EVAL algo

rithm. repeatedly evaluates the NDAM network until there are no more runnable 

processes. The inter-process coordination aspect of signals in the network revolves around 

the ‘r e q u i r e '  instructions. These instructions guarantee that no signal is referenced 

before its value becomes defined, if it is ever to become defined in the macrostep. On the 

other hand, it is the causality analysis which guarantees that no process blocks infinitely 

long while awaiting the definition of a signal (such programs are disallowed because they 

are C). This leaves the problem of determining, at runtime, when a signal may no longer 

be potentially emitted in a further 5-step. To determine when a signal is absent in the 

instant, the runtime system uses a set of mostly static “potential sets” (POT sets) are used 

to estimate whether or not a signal emission may occur. The hark algorithm computes
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the dynamic sum of these POT sets from the network. Signals with no potential are 

marked as a b s e n t  and the network evaluation continues for another 5-step. The opera

tional scheduler of 5-time is defined so that when no process can make further progress, 

then the (least relative) fixed point has been reached and the macrostep is complete.
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^  Conclusion

The preceding chapters have established the general theoretical basis of the semantics 

of synchronous system description languages. That theory arose in answering the two 

questions which were posed in the beginning:

1. How can the design representation language, inclusive of both its behavioral and 
structural aspects, be related to the mathematical model and to what extent should 
the structural artifacts of the design representation be made visible in the mathemat
ical model?

2. How should the structural aspects of the design representation language and their 
visibility within the mathematical model be related to the performance and the 
implementation of a property-checking algorithm?

Both of these questions focused on language semantics and the kinds of internal structure 

which might exist within a semantic model. In turn, structure within a model is a condition 

of abstraction wherein a fully abstract model preserves no structure from the original 

source language. When lull abstraction applies, two programs denote the same model ele

ment when they compute the same thing. In contrast, in a non-abstract semantics, model 

elements are not necessarily canonical. There may be many model elements which are 

equivalent but different.

Starting from the well-known premise that a fully abstract semantics of finite-state syn

chronous systems is far too unwieldy to work with in practice, this dissertation investi

gated the conditions when a non-abstract semantics can be substituted for the fully
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abstract one. The result is a theory, referred to as computational semantics in this work, 

which established the precise conditions when substitutability could be said to hold. This 

theory gave meaning to the diagram of Figure 8-1 for (L, S, M ):

• L is the set of all programs in some finite-state synchronous language {e.g. Esterel),

• M  = (Q, T) is a semantic model consisting of a finite set of states Q and a transi
tion relation I c Q x Q  between them,

• S:L -> M is a semantic map which associates programs in L with a model in M .

M

n
▼

M

Figure 8-1. Substitutability of the Non-Abstract Sa for the Fully Abstract S.

With the goal of substitutability in mind, two non-abstract semantics were defined and 

analyzed. These were the non-abstract semantics of 8-time and of a-time which corre

sponded respectively to the fine structure induced onto fully abstract time by two well- 

understood computational schemes: the serialized execution of multiple processes on an 

abstract instruction-set processor and the concurrent execution of a generalized combina

tional gate network. The general analysis framework that was used to analyze each of 

these schemes was called microsemantic analysis. It consists of the eight steps which are 

listed in Figure 8-2. The strong result of the microsemantic analysis formulation is a defi

nition of 5-time based on ideas from Scott’s domain theory and algebraic topology. In par

ticular, a forward macrostep is shown to be a least fixed point of the 5-time approximator
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functional and a backward macrostep is its greatest fixed point. It is significant that this 

definition of 5-time is mathematically based and is independent of any simulator event 

loop.

1. Temporal Analysis

2. Domain Analysis

3. The Primitive Transition Relation T0

4. The Primitive Image Functionals Fa and Bo

5. The Approximator Functionals 3F and G8a

6. The Approximated Image Functionals F  and B

7. The Projection n  to Full Abstraction

8. Observations

Figure 8-2. The Eight Steps of Microsemantic Analysis

Unfortunately, it has been observed that there exists mathematical baggage generated by 

the non-abstract approach that simply cannot be removed in any projection operation. This 

directly impacts the utility of substitutable non-abstract semantics because the extra 

implementation details introduced in the non-abstract semantics are shown to affect and 

prevent other expressiveness properties from the fully abstract case. The observation is 

Huizing and Gerth’s RMC Barrier Theorem which states that there can be no semantics 

which has all the properties of:

• Responsiveness (/?): Mealy-machine behavior can be expressed.

• Modularity (A/): outputs are singly assigned and unordered in microtime.

• Causality (O microsteps are well-ordered in forward-moving time.

Thus a semantics can be crudely summarized by whether it has responsiveness (is R 

or R ), modularity (is M  or M) and causality (is C or C). This led to the modification 

of the original substitutability diagram to the one shown in Figure 8-3 which illustrates the 

origin of these three elements. In particular, the new element is causality which is the
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explicit ordering within a step that is introduced by the non-abstract microsemantics 

(e.g. by 8 -time or c-time).

The RMC Barrier Theorem is a powerful result for it states that no general semantic 

model can be RMC. A non-abstract semantics may be RMC , RMC, RMC or even 

RMC and examples have been identified for all these combinations. The RMC Barrier 

implies that there is no clever microsemantics now extant or yet to be constructed where 

substitutability always applies. Fortunately, the RMC Barrier Theorem is phrased in terms 

of semantics, as a general class of rules for constructing systems, but not in terms of spe

cific system descriptions. Thus, while a (micro)semantics cannot be RMC. a particular 

system instance can be RMC. This leads to the third element of the theory of computa

tional semantics introduced in this dissertation: the methods for surpassing the RMC Bar

rier. Five methods for surpassing the RMC Barrier have been identified. These are listed in 

Figure 8-4.

L

Modularity
Responsiveness

Causality

Figure 8-3. The Mathematical Baggage of the Non-Abstract S 0.
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1. The Two-of-Three Choice
2. Separated Semantics

3. Structural Restriction to RMC

4. Semantic Restriction to RMC

5. Vacated Semantics

Figure 8-4. The Methods of Surpassing the RMC Barrier

The theory of computational semantics therefore consists of three interrelated parts 

which can be used to understand, classify and even design language semantics. These are:

1. A microsemantic analysis.

2. A classification of the fine structure of time according to R. M  and C.

3. The specific means used to surpass the RMC Barrier.

Using this framework a variety of semantics were surveyed. Additionally it was observed 

that the next obvious set of semantic extensions which might be added to a semantics (e.g. 

FRP, RCSP or the Clarke Languages) render it non-finite and even undecidable. From this 

survey it is clear that the Synchronous Languages, as a class, provide the best trade-off at 

the microsemantic level. They are RMC while recovering C on a per-program basis by 

disallowing non-causal programs at compile-time.

Additionally, a major result of this survey is the classification of the popular executable 

specification languages. Of significant interest are the standardized HDLs, VHDL and 

Verilog, which are both based on discrete event semantics (DES). The development of a 

mathematical understanding of these languages* semantics has long been a goal. Indeed, 

some concrete explanation of why they are problematic, as is the common perception, 

must be attained before there is any hope of repairing them or dispensing with the discrete 

event paradigm entirely. Merely dismissing it as mathematically intractable is not enough
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given its operational convenience. Such a concrete explanatory result has been obtained 

with this investigation in the following sense:

• The temporal analysis of DES shows that it has a three-level model of time: mac
rotime, 5-time and ri-time. This is in contrast to the popular view that DES time 
has two levels.

• At the macrotime level RMC holds.

• At the 8-time level R8M8C8 holds.

• Because of RSMS C8, there is exists no general procedure for projecting away the 
non-abstract details in 5-time.

• DES-based languages are not substitutable because n  cannot be defined.

This exposition makes clear the strong limitations of the discrete event approach to system 

specification.

In the general case DES-based languages are not substitutable, however there do exist 

semantically-defmed subsets of DES which have the substitutability property. One such 

subset is the Synchronous VHDL subset which is the RMC subset of VHDL's RMC. 

Unfortunately this subset has been shown in previous work to be highly problematic to 

work with because of the difficulty in modularity checking and causality checking cou

pled with the primitive flat process model of standard VHDL. The addition of new lan

guage features such as the hierarchical behaviors of the SpecCharts offer the best hope for 

salvaging the investment in training and infrastructure which has been built up around 

DES languages.

Finally the Nondeterministic Abstract Machine (NDAM) was introduced as an example 

of an internal representation designed according to the principles of computational seman

tics. The representation is oriented at imperative-style semantics and to that end the mate

rial form of an assembly language was used. Translation recipes for Esterel, Synchronous 

VHDL and the hypothetical “Synchronous SpecCharts” were described. In addition a 

runtime system here called the literal fixed point method was developed. This method has
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the distinct advantage of having very small implementation size while retaining the rela

tive speed of the older table lookup method.

To summarize, this dissertation has produced an explanation for how specification lan

guages for mixed hardware-software systems must be interfaced to the class of problems 

where a precise definition of behavior is required: formal verification and eventually auto

mated synthesis. This explanation was accomplished by making a very detailed examina

tion of the fine structure of time within a step. In addition to the results already related, the 

two very important results of this analysis which stand out above all the others are:

1. The demonstration and explanation of why the discrete event semantics of VHDL 
and Verilog are fundamentally flawed and cannot be easily repaired.1 This is the 
long searched-for result that shows why executable specifications must be con
structed from some other stuff than a pending-transaction queue and an event loop. 
Non-abstract synchronous semantics are the only possible next step.

2. The exhibition that any non-abstract semantics necessarily has a causality checking 
obligation. Further, that as synchronous languages and semantics move to wide
spread adoption, as they surely will, that this causality checking obligation is here to 
stay; it is not an accidental misfeature of the original suite of synchronous lan
guages.

I. Synchronous VHDL notwithstanding. The synchronous subset is difficult to program to because the base 
semantics is M and the programmer must mentally estimate for M .
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^  The Assembly Language of the NDAM

The following sections provide a complete definition for the Non-Deterministic 

Abstract Machine (NDAM) assembly language. The presentation here is of a syntactic 

and structural nature with the main body, and especially Chapter 7, defining the computa

tional semantics of the NDAM.

A.l Structure Description

A system description is made up of a network declaration and its associated process 

tree. The network and its processes are depicted in Figure A-1. Since each process can 

contain other processes, a tree-like structure is obtained. There is exactly one network def

inition which defines the system. Within the network there arc declarations for types and 

signals. Some subset of these signals are labeled as the system's inputs and another dis

joint subset is labeled as the system's output.

A.1.1 The Network

The network is a description of all of the top-level types and signals used in the system. 

The network declaration is:

network VI(NAME) is 
d e c l a r a t i o n s  
p r o c e s s e s - t r e e  

end network N (NAME)

A l l
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signals

processes

Figure A-1. Processes in a Network Communicating by Signals

The declarations consist of the type and signal declarations. These declarations are visi

ble throughout the process tree. The declaration of the types at the top-level is needed to 

ensure that the types referenced in signal declarations can be mentioned before their use.

The process tree portion is a series of declarations mentioning process names which 

defines the structure of the process tree. The declarations run according to one of the two 

forms:

top: { P(NAME) }
P (.NAME) : { P(NAME) }

The first form declares the top of the process tree stating that the top of the tree contains 

the processes mentioned on the right-hand side. There can be only one such declaration.

The second form defines the internal branches of the process tree. The left-hand side 

defines the parent and the right-hand the children of that parent. A process can only be 

mentioned on the left-hand side once in the network. The processes on the right-hand side 

are children of that parent and must appear in some TCWC instruction in the parent. A
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process can only be mentioned in one right-hand side in the network. These two restric

tions ensure that the process tree declarations actually form a tree.

The leaf processes in the process tree are declared by being mentioned in a right-hand 

side and no left-hand side.

Example:

The example of Figure A-2 defines a network with three signals and four processes.

network N(l) is 
type t(unlt) 1 
type t(bool) 2 
type t(int5) 5 
signal S(tick) t(unit) 
signal S(go) t(bool) 
signal S(val) t(lnt5) 
top: P(l), P(2)
P(l): P(3), P(4)
P(4): P(5), P(6), P(7) 
and network N(l)

Figure A-2. An Network Declaration and Its Process Tree

A.2 The Process

The process is the fundamental unit of structure in the network. The process is the unit

of execution and also defines the unit of concurrency. The process is also the fundamental

structure onto which watchdog guards and exceptions are built. These aspects are ureated

in the section on the TCWC instruction in Section A.4.8. A process is declared as follows:

process P(NAMB) is 
d e c l a r a t i o n s - a n d - i n s t r u c t i o n s  
end process P(NAME)

The P (NAME) must appear in the process tree declaration of the containing network. By 

virtue of that mention, the unique position of the process in the process tree is known. A
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process contains some declarations which define the types, signals, registers, exceptions 

and sensors that are visible to it and its children. The set of types, signals, registers, excep

tions and sensors visible in a process are those declared in any of its parents and including 

the network. A declaration of any of these entities within the process shadows a more glo

bal declaration.

The process may also define some counters to be used in counted signal guards of a 

TCWC instruction. These counters are visible only within the process.

For all but the top level processes there must be at least one interface declaration 

that indicates the points at which the process can be called by its parent. The top level pro

cesses are assumed to commence execution at the first executable instruction in their code 

body.

The process body is made up of one or more executable instructions. The set of instruc

tions is presented in Section A.3.

Example

An example of two processes are shown in Figure A-3

process P(l) is process P(2) Is
type T(unit) 1 interface 1(0) 1.(1)
signal S(this) T(unit) Ml): wait S(this)
constant R(0) t(unit) :* 0 M2): emit s(tliat) R(0)
signal S(that) T(unlt) goto Ml)
Ml): wait S(this) end process P(2)
M2) : call P(2) 1(0)

goto Ml) 
end process P(l)

Figure A-3. Two Simple Processes
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A3 Data Declarations

There are three classes of declarations: type declarations, counter declarations and stor

age declarations. Of the storage declarations these can be further broken down into the 

purpose of the storage: signal, exception, register and sensor.

A.3.1 Type Declarations

The type declaration introduces the name of a type and defines how many values that 

type may take on. The effect of type declarations is to declare a class of multi-valued vari

able. There are two variants:

type T{NAME) N 
type T(NAME) range VI V2

The first defines a type domain that has N possible values. Equivalently, this can be 

thought of as declaring an unsigned integer domain that ranges from 0 . .N - l .  The second 

defines a type domain that ranges over values in the range V I . . V2.

The type declaration does not offer a way of naming any of the values of the multi-val

ued variable. Such naming is considered to be an artifact of a high-level language and is 

best left at that level. A constant register declaration may associate names with the values 

of the type.

In the example of Figure A-4, one singleton type is declared along with multi-valued 

types. The type t (unit) contains only one possible value: 0. It would be used in an 

Esterel compiler as the type for a pure signal or exception. Of the other two types, the sec

ond has two possible values, 0 and 1: the third has eight possible values ranging from 

0 to 7.

A type with values ranging from VI on the low end to V2 on the high end can be 

declared. The value VI must be no greater than V2 so that a non-vacuous range is defined.
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type t(unit) 1 
type t(bool) 2 
type t(mv8) 8

Figure A-4. Some Commoniy-Used Type Declarations

In the declarations of Figure A-5, two multi-valued types are declared: one type has thirty- 

two possible values, ranging from -16 to 15; the other has four billion possible values.

type t(int5) -16 15
type t(int32) -2147483648 2147483647

Figure A-5. Type Declarations Using a Bounded Range

A.3.2 Counter Declarations

Counter declarations are local to the process in which they are declared. This is unlike 

type declarations and storage declarations which are visible both in the process all child 

processes. A counter declaration is only referenced in a TCWC instruction to manage the 

counting of a counted signal occurrence. The declaration follows the form: 

counter C (NAME) INTEGER 

This declares a counter to have INTEGER as its initial value whenever it is used in a 

TCWC instruction. See also Section A.3.x on the watching clause of the TCWC instruction.

A3,3 Storage Declarations

Storage declarations define objects in a process such as registers, signals, exceptions 

and sensors.

A .3.3.1 Definition Classes

Definition classes identify commonly-used data patterns on storage declarations. These 

are singleton variables, records and arrays. The three definition classes are common to all
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four storage classes so it is worth treating them orthogonally. All follow the general style 

of:

c l a s s  ?{NAME)

where c l a s s  is one of register, signal, exception, or sensor and ?{NAME) 

is the name of the object with ? being the relevant name-key character R, s , E, and X 

respectively.

Singletons

The fundamental unit of declaration is the singleton with each singleton unit of storage 

being associated with a type. The type defines how much information can be stored in that 

slot (how many bits are required).

C l a s s  ?(NAME)  T(WAME) ( V  ]

A singleton of the c l a s s  is declared; it contains one field. The storage slot can optionally 

be initialized with a value at the point of declaration. If no initializer value is declared the 

default initialization value of zero is assumed.

Arrays

Arrays, though declared as a multidimensional entity are always indexed with a single 

integer quantity.

c l a s s  ?{NAME) T (NAME) D, D, . . . D [ : ■ V, V,  . . .  V  ]
An array of the c l a s s  is declared: it contains as many fields as dictated by the “volume" 

of the dimensions. These fields can be optionally initialized at the point of declaration. If 

initializer values are given then the number of initializers must be no greater than the num

ber fields: uninitialized fields receive the default initialization value of zero.

Arrays provide a form of computed name that can be cogently handled in the symbolic 

formalism of the transition relation. Were unbound pointers allowed on the machine then
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the transition relation corresponding to a pointer indirection operation would be have to 

take into account the possibility that the pointer value could be any possible data location.

Records

Records are treated in largely the same way as arrays on the machine. A record of the 

class is declared; it contains a number of fields. The fields can be optionally initialized at 

the point of declaration. If initializer values are given then the number of initializers must 

be no greater than the number fields; uninitialized fields receive the default initialization 

value of zero.

c l a s s  ?{NAME) T(NAME), T(NAME), ... T(AHME) [ :■
V, V, ... V ]

Class ?(NAME) T(NAME) [ : •  V  ] , T(NAME)
[ V ], ... T(NAME) [ :« V ]

The major difference between an array and a record is that a record-classed storage is 

made up of slots that can differ in their type. As with the array case, there is a distinct 

assign-from-field and assign-to-field instruction. In contrast with the array case, the 

f i e l d  value is a constant so it is not possible to construct a pointer-to-a-field.

A.3.3.2 Register Declarations

There are three kinds of registers, constant registers, temporary registers and permanent 

registers. It is most useful however to consider registers as belonging to one of two kinds: 

non-constant and constant registers of which the non-constant registers are further divided 

into temporary registers and permanent registers. The distinction between the temporary 

registers and the permanent registers is that the temporaries are understood to not persist 

across an instant boundary. Their use is thus restricted to intra-instant computations. 

Therefore they could conceivably be allocated from some temporary space such as a 

stack. In the verification context, they could be smoothed away to reduce the state space of 

the problem.
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Non-constant registers are suitable for use in representing variables, temporary or other

wise, which are to be operated upon using the various assignment operators. They can 

appear on the left-hand side of an assignment.

Constant registers on the other hand are suitable for representing constants such as the 

members of a scalar type. Temporary registers are intended to be used to store (compiler- 

generated) values that do not need to be saved across instant boundaries; thus temporary 

registers may be added and destroyed with impunity by the compilation process. The per

manent register declarations are;

register R(M3IME) T(NAME) [ v  ]
register R(NAMB) T{NAME), T(NAME), ... T (NAME) [ :■

V,  V,  . . .  V  ]
register R(NAME) T(NAME) [ :■ V ], T(MAME) [ :■ V ] ,

... T(NAME) [ V  ], T(NAME) [ V  ] 
register R (NAME) T(NAME) D, D, . . .  D [ :■ V, V,  . . .  V  ]

The temporary registers cannot be initialized with a value because their values do not per

sist across instant boundaries. They must be assigned to within the instant before their val

ues are referenced. Their declarations are:

temporary R(NAUE) T (SAME)
temporary R (NAME) T(i»MB), T(NAME), . . .  T(NAME) 
temporary R(NAME) T(NAMB) D, D, . . .  D

Constant registers can never be assigned. Thus they must be given an initial value with 

their declaration. The constant register declarations are: 

constant R(AAME) T(NAME) v
constant R(NAME) T(NAME), T {NAME), . . .  T(NAME) :■

V,  V,  . . .  V  
constant R(JNAME) T(NAME) :■ V, ?{NAME) :■ V,

. . .  T(NAME) :■ V, T(NAME) :« V 
constant R(NAME) T(NAME) D, D ,   D i «  V,  V ,  V

Registers, constant, temporary and permanent can be declared at any level of the process 

tree. Such registers are visible both within the declaring process and in its children unless 

their visibility is occluded by a more local declaration.

485

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

An example of the various sorts of register declarations is shown in Figure A-6.

type t(bool) 2 
type t(lnt32) 4294967296 
register r(a_bit) t(bool) :■ l 
constant r(r32) t(lnt32) :• -9000233

register r(a_rec) t(bool), t(lnt32), t(bool)
1, -9000233, 1 

temporary r(tbree_r32) t(lnt32), t(lnt32), t(lnt32)
constant r(a_rec) t(bool) :■ 1,

t(lnt32) s- -9000233, t(bool) :« 1 
constant r(three_r32) t(lnt32) s■ i,

t(lnt32) x- 2, t(lnt32) :■ 3
type t(frog) 7
temporary R(fig) T(frog) 1, 2, 3

constant r(an_array32) t(bool) 32 :-
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 1

type t (3) 3
register r(r32_3by3) t(3) 3, 3

1, 2, 3, 4, 5, 6, 7, 0, 9
Figure A-6. The Various Sorts of Register Declaratoins

A .3.33 Signal Declarations

Signal declarations are given according to the storage declaration form. They cannot 

have initial values. Their declarations are:

signal S(NAME) T (NAME)
signal S (NAME) T(SAME) , T(NAME), . . .  T(NAME) 
signal S(NAME) T(NAME) D, D, . . .  D

Signals can be declared at any level of the process tree. Such signals are visible both 

within the declaring process and in its children unless their visibility is occluded by a 

more local declaration. Signals declared at the network level are visible to all processes. 

Examples of signal declarations are shown in Figure A-7.
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typ® t(pura) 1 
typ® t(bit) 2 
typ® t(r®g32) 4294967296 
signal S(tlck) t(pure)
signal S(iovac) t(rag32), t(r«g32), t(r®g32) 
signal S(dsp-dim3) t(bit) 3, 3, 3

Figure A-7. The Various Sorts of Signal Declaration

A.3.3.4 Exceptions Declarations

Exception declarations are given according to the storage declaration form. They cannot 

have initial values as their value is defined at the time the exception is raised and is lost at 

the end of the instant. Their declarations are: 

exception E (SAME) T(AIAME)
exception E(AHME) T(WAME), T(MSMB), ... T(MAME) 
exception E(MAME) T(NAME) D. D. ... D

Exceptions can be declared at any level of the process tree. Such exceptions are visible 

both within the declaring process and in its children unless their visibility is occluded by a 

more local declaration. Exceptions may only be referenced in a TCWC instruction or in a 

raised instruction in the process in which they were declared. A raise instruction 

may mention any visible exception.

A.3.3.5 Sensor Declarations

Sensor declarations are given according to the storage declaration form. They cannot 

have initial values as their value is defined only as it is written or read. Their declarations 

are:

sensor X(KAME) T(MAME)
sensor X(MAME) T (NAME), T {NAME), ... T(NAME) 
sensor X(JMAME) T(NAME) D, D, ... D

Sensors can be declared at any level of the process tree. Such sensors are visible both 

within the declaring process and in its children unless their visibility is occluded by a

487

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

more local declaration. Sensors may also be declared at the network level. Such sensors 

are visible to all processes.

A.4 Executable Instructions

The set of executable instructions can be broadly broken up into nine classes:

• Assignment Operations

• Unary Operations

• Binary Operations

• Control Transfers

• Signal Operations
• Exception Operations

• Sensor Operations
• Try Call Watching Catching

• Process Control

These are covered in the subsequent sections.

A.4.1 Assignment Operations

Assignment operations move information from one register to another. They are exclu

sively a registcr-to-register operation. The various flavors of assignment deal with moving 

information into and out of register arrays (member assignment using a dynamically-com

puted index) and moving information into and out of register records (field assignment 

using a statically-named index) and aggregate assignments between registers of the same 

type.

The notation used in this section as well as the following sections on unary and binary 

operations is that the two sides to an assignment operation are denoted by l h s  for the left- 

hand side and R H S  for the right-hand side.
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Of course, only non-constant registers may appear on the left-hand side of an assign

ment while either constant or non-constant register references may appear on the right- 

hand side. This rule is driven by the common sense that one must not destroy copies of 

constants; this is a statically checkable condition.

R (LHS) R(RHS)

An assignment is made from the register R (RHS) to the register R(LHS). The 
assignment is independent of the sfze of the registers though the number of single
tons in an array or record must match on both sides. The types of the registers do 
not need to match; the bits are moved from the left-hand side to the right-hand side 
with truncation occurring for transfers into a smaller domain.

The assignment must be between either two singletons registers, two record regis
ters with the same number of fields or two array registers with the same volume. 
This is a statically-checkable condition.

R (LHS) R ( R H S ) . o f f s e t *
An assignment is made from the field offset of the register R (RHS) to the register 
R (L H S ) . The register R( LHS) must be a singleton as the assignment only refer
ences a single field of R (RHS) . The offset must be an unsigned integer which is 
within the bounds of the number of fields in the register R (LHS) . This is a stati
cally-checkable condition.

R (LHS) . o f f s e t  R(RHS)
An assignment is made to the field offset of the register R (LBS) from the register 
R (RHS) . The register R(RHS) must be a singleton as the assignment only refer
ences a single field of R (LHS). The offset must be an unsigned integer which is 
within the bounds of the number of fields in the record register R (LHS) . This is a 
statically-checkable condition.

R(LHS) R(RHS) [ R(E) ]
An assignment is made from the member indicated by the value of R (E) of the 
array register R (RHS) to the register R (LHS) . The register R (LHS) must be a 
singleton as the assignment only references a single member of R (RHS) . This is 
not a statically-checkable condition unless R (E) is a constant register.

R (LHS) [ R( E) ] R(RHS)

An assignment is made to the member indicated by the value of R{E) of the array 
register R (LHS) from the register R (RHS) . The register R (RHS) must be a sin
gleton as the assignment only references a single field of R (LHS) . The R{E)  
must be an unsigned integer which is within the bounds of the number of members
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in the array register R (LHS) . This is not a statically-checkable condition unless 
R(£) is a constant register.

R (LBS) R(RES) [ R(LOW) , R(HIGH) ]
An assignment is made from the member indicated by the values of R (LOW) to 
R(HIGB) of the array register R{RHS) to the register R( LHS). The register 
R {LHS) must be an array as the assignment references the multiple members of 
R (RHS). This is not a statically-checkable condition unless R(LOW) and 
R(HIGB) are constant registers.

R(LHS) [ R(LOW) , R(HIGH) ] :« R(HIGH)
An assignment is made to the array indicated by the values in the range of 
R(LOW) to R (HIGH) of the array register R(LHS) from the register R (RHS). 
The register R (RHS) must be an array as the assignment references the multiple 
fields of R (LHS). The R (LOW) and R (HIGH) must be an unsigned integer 
which is within the bounds of the number of members in the array register 
R (LHS) . This is not a statically-checkable condition unless R(LOH0 and 
R (HIGH) are constant registers.

A.4.2 Unary Operations

The unary operations are defined by a destination register called R(LHS) and a single 

source register called R (RHS) . There is also an operation op which is performed on the 

value of R(RHS) as it is transferred. The following sections describe the possible unary 

operation statements.

For the unary operations, the R{RHS) and R(LHS) registers may be any a singleton, 

record or array register, but both registers must match with respect to type, storage class 

and in size, for record registers, or volume for array registers. This condition is statically 

checkable.

In the case of aggregate registers, the unary operation is performed element-wise on all 

the members of the aggregate. Thus the sense of the unary operator acting upon a record 

or array register is that of a vector operation.
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R(LHS) abs R(RHS)
The absolute value of R (RHS), interpreted as a 2s-complement number, is placed 
in R (LHS).

R(LHS) dec R(RHS)
The value of R(RHS) , interpreted as a 2s-complement number, decremented and 
placed in R (LHS).

R(ZiHS) inc R(RHS)
The value of R( RHS), interpreted as a 2s-complement number, incremented and 
placed in R(LHS).

R(LHS) not R(RHS)
The value of R (RHS) is interpreted as an unsigned integer is complemented and 
placed in R(LH5). The complementation performed is a logical one, so any non
zero value is transformed to 0 while the 0 value is transformed to 1. The type 
domain of R( LHS) should contain more than one member for this to be meaning
ful.

R(LHS) :■ - R(RHS)
The bits of R (RHS) are complemented and placed in R (LHS).

R(LHS) - R(RHS)
The value of R(RHS) , interpreted as a 2s-complement number, negated and 
placed in R (LHS).

A.4.3 Binary Operations

The binary operations are defined by a destination register called R(LHS) and a two 

source registers called R(RHS-1) and R ( R H S - 2 ) . There is also an operation op which 

is performed on the values in R (RH S-1 ) and R(RHS-2) as it is transferred. The follow

ing sections describe binary operation instructions.

For the binary operations, the R (R H S-1 ), R (RHS-2) and R (LHS) registers may be a 

singleton, record or array register, but both registers must match with respect to storage 

class and in size. For record registers this means the number of fields must match and for 

array registers this implies the volumes must match. This condition is statically checkable.
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In the case of aggregate registers, the binary operation is performed element-wise on all 

the members of the aggregate. Thus the sense of the binary operator acting upon a record 

or array register is that of a vector operation.

R(LHS) R (R H S - l ) and R (RHS-2)

The value of R( RHS-1) and R(ROS-2) are combined via logical-and and 
placed in R (LHS) . The operation performed is a logical one so nonzero values are 
transformed to 0 while the 0 value is transformed to I.

R(LHS) R(RHS-1) or R (RHS-2)

The value of R (RHS-1 ) and R (RHS-2) are combined via Iogical-or and placed 
in R(LH S) . The operation performed is a logical one so nonzero values are trans
formed to 0 while the 0 value is transformed to 1.

R(LHS) R (R H S - l ) nand R (RHS-2)

The value of R (R H S - l ) and R(RHS-2) are combined via logical-nand and 
placed in R (LHS) . The operation performed is a logical one so nonzero values are 
transformed to 0 while the 0 value is transformed to I.

R (LHS) :■ R (R H S - l ) nor R (RHS-2)

The value of R (RHS-1 ) and R (R H S -2 ) are combined via Iogical-nor and placed 
in R (LHS) . The operation performed is a logical one so nonzero values are trans
formed to 0 while the 0 value is transformed to I.

R (LHS) :■ R (RHS-1) xor R (RHS-2)

The value of R(RHS-1) and R(RHS-2) are combined via logical-xor and placed 
in R (LHS) . The operation performed is a logical one so nonzero values are trans
formed to 0 while the 0 value is transformed to I.

R (LHS) :■ R (RHS-1) « R (RHS-2)

The value of R (RHS-1 ) and R (RHS-2) are combined via a comparison for 
equality, and placed in R(LH S) . A value of 1 results if the comparison is true: a 
value of 0 results if the comparison operation fails.

R (LHS) :■ R (R H S-l ) /■ R(RHS-2)

The value of R (RHS-1) andR(RHS-2) are combined via a comparison for ine
quality, and placed in R(LH S) . A value of 1 results if the comparison is true: a 
value of 0 results if the comparison operation fails.
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R(LHS) R(RHS-l) < R ( R H S - 2 )

The value of R (RH S-1 ) andR (RHS-2) interpreted as 2s-complement integers 
are combined via a less-than comparison, and placed in R(LHS). A value of 1 
results if the comparison is true; a value of 0 results if the comparison operation 
fails.

R(LHS) R (RHS-1) > R(RKS-2)
The value of R(RHS-l) and R(RHS-2) interpreted as 2s-compIement integers 
are combined via an integer greater-than comparison, and placed in R (LHS). A 
value of 1 results if the comparison is true: a value of 0 results if the comparison 
operation fails.

R(LHS) R(RHS-1) <- R (R H S -2)
The value of R (RHS-1) andR (RHS-2) interpreted as 2s-complement integers 
are combined via an integer less-than or equal comparison, and placed in 
R (LHS). A value of 1 results if the comparison is true; a value of 0 results if the 
comparison operation fails.

R(LHS) :> R(RHS-l) >- R(RHS-2)
The value of R( RHS-1) andR (RHS-2) interpreted as 2s-complement integers 
are combined via a greater-than or equal comparison, and placed in R (LHS). A 
value of 1 results if the comparison is true; a value of 0 results if the comparison 
operation fails.

R(LHS) R {RHS-1) + R(RHS-2)
The value of R(RHS-1) and R(RHS-2) interpreted as 2s-complement integers 
are combined via integer addition, and placed in R (LHS). Overflow is ignored.

R(LHS) R(RHS-1) - R(RHS-2)
The value of R(RHS-1) and R(RHS-2) interpreted as 2s-complement integers 
are combined via integer subtraction, and placed in R (LHS). Overflow is 
ignored.

R(LHS) R (R H S -l )  * R(RHS-2)

The value of R( RKS-1) andR (RHS-2) interpreted as 2s-complement integers 
are combined via integer multiplication, and placed in R( LHS). Overflow is 
ignored.

Depending on the bit width required for the operation, there may be practical prob
lems associated with representing the transition relation of this instruction.
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R(LHS) R (R H S - l ) / R (BBS-2)

The value of R (R H S - l ) and R(RHS-2) interpreted as 2s-complement integers 
are combined via integer division, and placed in R(LHS).
Depending on the bit width required for the operation, there may be practical prob
lems associated with representing the transition relation of this instruction.

It is an error for the value of R (RHS-2) to be the value 0 and so instances of oper
ations where there is a possibility of such a situation should be protected by the 
appropriate branch instructions.

In a synthesis context a divide by zero has undefined consequences. In a verifica
tion context, a divide by zero implies that R (LHS) has an undefined value (i.e. all 
possible values).

R (LHS) R(RHS-1) nod R(RHS-2)

The value of R (R H S - l )  and R (R H S -2 ) , treated as 2s-complement integers are 
combined via integer the modulus operation, and placed in R(LHS).

The rules for division apply to this instruction as well.

R(LHS) R(RHS-1) rem R (RHS-2)

The value of R (RHS-1) and R (R H S -2 ) , treated as 2s-compIement integers are 
combined via integer remainder operation, and placed in R (LHS).
The rules for division apply to this instruction as well.

A.4.4 Control Transfers

Control-transfer instructions modify the program counter, possibly based on some con

dition. They should be thought of as instructions which conditionally (or not) assign to the 

program counter, thereby dictating the next control-state of the abstract machine.

goto L(TARGET-1), L(TARGET-2 ), ... L(TARGET-N)

An unconditional branch is performed the target. In the nondeterministic case, the 
successor pc of the machine is one of the targets. If there is only one target then the 
goto is a deterministic branch; if there is more than one branch then the goto is 
considered to be a nondeterministic branch.

The example of Figure A-8 shows the declaration of three paths which are non-determin- 

istically executed. The first goto is nondeterministic and declares three possible targets 

L(le£t), L(middle) and L(right). Subsequently for each target an instruction
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performs some work, either incrementing, decrementing or taking the absolute value of 

the previously-declared register r  (1 ) .  A deterministic goto is used to continue at com

mon point labeled L (end).

goto L(left), 1(middle), L(right)
L(left): r(l) :• inc r(l)

goto L(end)
L(middle):r(l) :■ dec r(l) 

goto L(end)
L(right): r(l) :■ aba r(l)

goto L(end)
L(end): null

Figure A-8. A Nondeterministic Goto Instruction

if [ not ] R(TEST) goto L(TARGET)
A conditional branch is performed depending on the binary value of R (TEST). If 
the value is positive then the goto is affected; if the value is zero then control 
passes to the next statement. The keyword not inverts the sense of this test. Of 
note, the type of R (TEST) must be binary in the sense that the type must have at 
least the range 0 to 1.

The example of Figure A-9 shows a type t  (b o o l)  which is declared to have an appro

priate range, “from 0 to 1” for use in an if statement. This type is then used to declare a

temporary register r  (tmp) which is in turn used to store the result of a comparison 

between two previously-declared registers r ( l )  and r ( 2 ) .  The core of the example is 

the use of the if statement in both phases to test the value of the comparison. As there is no 

possibility of executing beyond the if statements an exit can be used to declare that the 

fall-through path is unexecutable.

type t(bool) 2 
temporary r(tmp) t(bool) 

r(tmp) :■ r(l) ■ r(2) 
if r(tmp) goto L(good) 
if not r(tmp) goto L(bad) 
exit

Figure A-9. A Code Fragment Using the If Instruction
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case R(JCSY)
when V - l - 1 ,  V - l - 2 , ... V - l - N  goto L (TARGET-1) ;
when V - 2 - 1 ,  ' 7 - 2 - 2 , ... V - 2 - N goto L (TARGET-2) ;

•  •  •

When V - M - l ,  V-M-2, ... V-M-N goto L( TARGET-N)

A multi-way branch is performed based on the value in R(JCEY). Conceptually the
R (KEY) is matched against the v - i - j  and whichever value is equal, then the 
goto of that when clause is taken; if none match then execution continues with the 
following statement.

All of the v - i - j  are required to be in the range of the type of the R (KEY) and 
each v - i - j  must be unique to ensure that the statement is deterministic. The v -  
i - j  can be either integer literals or constant registers. They may not be non-con
stant registers.

The example of Figure A-10 shows a small fragment of code which acquires the current 

selection on the signal a (value) and uses the value as the key for a case statement. The 

case statement targets one of three possible outcomes L(low), L(middle) and 

L (redo) which are not described. Finally an exit is used to indicate that falling through 

the case statement to the subsequent statement is impossible.

temporary r(key) t(type) 
constant r(EXIT) t(type) :■ 3 
constant r(FAIIi) t(type) :« 4 

r(key) :■ selection s(value) 
case r(key)
when 0, 1, 2 goto L(low); 
when R(EXIT) goto L(high); 
when R(FAIIi) goto I<(redo) 
exit

Figure A-10. A Code Fragment Using the Case Instruction

present [ not ] S(NAME) goto L(TARGET)
A conditional branch is performed depending on whether the signal S (SAME) is 
present in the current instant. If so then the transfer is affected; if not then control 
passes to the next statement. The keyword n o t  inverts the sense of this test. Of 
note, the type of S (NAME) can be arbitrary as its value is not referenced; only its 
presence or absence is detected.
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Ail flow paths leading to the present instruction must have the property that the 

instruction is preceded by either a require or an emit. The presence or absence of the 

mentioned signal must be known at the instruction’s execution.

The example of Figure A-l 1 shows a type t (any) which is declared to have an some 

appropriate range. This type is then used to declare a signal s(some) onto which is emitted 

a constant r (1) which was presumably declared previously. The core of the example is 

the use of the presence statement in both phases to test for the presence or absence of the 

signal. As there is no possibility of executing beyond the present statements an exit is used 

to declare that the fall-through path is unexecutable.

type t(any) 18 
signal s(aama) t(any) 

salt s(some) :■ r(l) 
rsquirs s(soma) 
present: s(some) goto Ii(here) 
if not s(some) goto L(there) 
exit

Figure A-l 1. A Code Fragement Using the Present Instruction

select
when s exp-1-1, s e x p - 1 - 2  . . .  s e x p - l - M  goto h (N A M E -l) ;
when s exp-2-1, saxp-2-2 ... s e x p - 2 - M  goto L {NAME- 2 ) ;
•  •  •

when a e x p - N - 1 ,  s e x p - N - 2  . . .  s e x p -N -M  goto L (NAME-N) ;

The select instruction is a multi-way branch that is related to the present
instruction in the same way that the if instruction is generalized to case.
The s e x p  is an conjunctive expression denoting the presence or absence of a set 
of signals. Each a e x p - i - j  tests that a specific set of signal event occurred in the 
current instant.

In the s e x p - i - j  syntax, presence is denoted by S (NAME) - the signal name 
appearing by itself. Absence is denoted by ~S (NAME) - the signal name negated. 
Conjunction is denoted with the * symbol with signal expressions formed as per 
the example of Figure A-12.

497

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

The select is deterministic. If mote than one mentioned sexp-i-j matches 
for the current instant then-control is transferred via the when clause mentioned 
first.

As with the present instruction, all flow paths leading to the select instruction must 

have the property that the instruction is preceded by either a require or an emit. The 

presence or absence status of all signals mentioned in the select must be known at the 

instruction’s execution.

Sithis) * S(that) * -S(the-other) 
~S(this) * -S(that) * -S(the-other)

Figure A-12. Some Example Signal Expressions

The example of Figure A-13 is a generalization of the previous example that used the 
present instruction.

type t(any) 18 
signal s(some) t(any) 
signal s(nore) t(any) 

emit s(soma) x■ r(l) 
require s(aome) 
select
when a(some)*-s(more) goto L(here); 
when -s(sama)*s(more) goto L(there) 
exit

Figure A-13. A Code Fragment Using the ’select’ Instruction

A.4.5 Signal Operations

The signal operations provide the means by which the values in the registers of the pro

cess are assigned to signals and by which the presence and value components of signals 

are recovered into the registers of a process.

emit S (LHS) R(JtHS-I), R(RHS-2), ... R (RHS-N)

A set of possible values is emitted onto the signal S {LHS) . The value of s  (LHS) 
is then, nondeterministically, one of the R ( R H S - 1 ) . The selection statement
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can be used to reference this non-deterministic value. A deterministic emission is 
simply an emission where there is but one R (RHS).

Examples:

The first example is a deterministic emission which places the value currently found in 

the register r (1) onto the signal s (result). The second example is a nondeterministic 

emission which places the value of both r (bad) and r (good) onto s (ok).

emit a(result) r(l) 
emit a(ok) r(bad), r(good)

Figure A-14. A Code Fragment the Emit Instruction

undef S(LHS)

The signal S (LHS) is reset to its unknown state. This instruction is used for 
implementing local signals.

The use of undef must be carefully controlled for if not used to clear the internal state of 

local it will destroy the single assignment property of signals and thereby corrupt the mod

ularity of the computational semantics.

R(LHS) :■ selection S(RHS)
The selection of S (RHS) is assigned to R(L B S ) . In the deterministic case, this 
merely represents extracting the current value of the signal S (RHS) and placing 
that value in R (LHS).

The signals value (and thus its presence or absence) must be known at the instruction’s 

execution. All flow paths leading to the selection instruction must have the property 

that instruction they are preceded by either a require or an emit.

R(LHS) :■ presence S(RHS)
The presence of S (RHS) is assigned to R (LHS).

The rules for selection, apply to this instruction as well. The presence or absence of 

S (RHS) must be known at the instruction’s execution.
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require S ( R H S - 1 ) ,  S ( R H S - 2 ) , ... S(RHS-H)

The execution of the containing process suspends until the value and pres
ence/absence status of the S (RHS-1) are defined.

This is a synchronization instruction and either it or an emit must precede every explicit 

signal reference instruction (selection, presence or present).

A.4.6 Exception Operations

Exceptions are provided explicitly through the notion of subprocesses. The granularity 

of exceptions is at the level of the subprocess. Exceptions are handled across the subpro

cess call boundary through the handle-clause of a call instruction. Exceptions are raised in 

subprocesses by naming the exception name and parent process to which control is to be 

transferred.

The value recovered in the handling parent is transferred also. In this sense an exception 

name is a register through which the exception-raising subprocess and the exception-han

dling parent process may communicate a value. The exception value only persists from 

the handle clause of the TCWC to the end of the instant. In this sense, exception registers 

are more akin to temporaries. The exception value must be explicitly read from the excep

tion register space into the true register space if the raised value is to be preserved.

raise E(NAME) R(NAME)

The exception E (NAME) that is visible in the process tree is raised and the value 
contained in R( NAME) is assigned to the exception register of the process where 
the exception declaration appears. The storage class (singleton, record, array) of 
E(NAME) and R(NAME) must match.

R(NAME) raised E (NAME)

The value in the exception register E (NAME) is transferred to the register 
R(NAME) which may be either a temporary or permanent register (but of course 
may not be a constant register) and must have the same storage class (singleton, 
record, array) as E (NAME).
This instruction is only valid within the process where E (NAME) is declared and it 
must appear on a flow path from the handle subclause of the TCWC.
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A.4.7 Sensor Operations

Sensors are defined in their own name space, X(NAME) to make it clear that the sensor 

values have nothing to do with either the state space of the process or with the event- 

semantics of the process. The letter X was chosen to indicate that the value of a sensor is 

unknown and unpredictable. The value of a sensor can thus not be predicted by dataflow 

analysis and thus imposes constraints on the high-level optimizations which can be per

formed around it. Sensors are supported by two instructions:

write X(NAME) R(NAME)

The value in R (NAME) is written to the sensor X( NAME); the storage class of 
X (NAME) and R (NAME) must match.

R(NAME) read X(MAME)
The value of the sensor X (NAME) is read into the register R (NAME) . R (NAME) 
must be a temporary or permanent register (not a constant register of course) and 
must have the same storage class (singleton, record, array) as X (NAME).

A.4.8 Try Call Watching Catching (TCWC)

The fundamental unit of process control is the "Try Call Watching Catching, ” or TCWC 

instruction. While all the other instructions are conceptually simple, this one instruction 

bears the burden of three features: concurrent subprocess execution, guarding and pre

emption.

501

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

try
call P(NAME-1) at I(NAME-1); 
call P(NAME-2) at I(NAME-2);
call P(NAMB-L) at I(NAME-L); 

watching
when C(NAME-1) S(NAME-l) goto L(NAME-wl); 
when C(NAME-2) S(NAME-2) goto L(NAME-w2);

•  •  •

when C(NAME-M) S(NAME-M) goto L(NAME-cM); 
catching

handle E(NAME-1) goto L(NAME-cl); 
handle E(NAME-2) goto L(NAME-c2);
•  •  •

handle E(NAME-M) goto L(NAME-CM)
The behavior of the TCWC is described in the following sections. Both the 
catching and watching clauses are optional.

A.4.8.1 Calling a Child

The call clauses provide for control transfers between a parent process and one or more 

child processes. The singleton form without all the decoration for guarding and preemp

tion is simply:

call P (NAME) I  (NAME) 
which entails a control flow from the current TCWC instruction to the interface I  (NAME) 
o f the child process P (NAME). P (NAME) must be a child process o f the containing pro

cess as declared in the network's process tree.

A.4.8.2 Parallelism

More generally, the variant of the TCWC that invokes multiple subprocesses at one time 

is stated as: 

try
call P (NAME-1) I  {NAME-1) ; 
call P (NAME-2) I  (NAME-2);
•  •  •

call P(NAME-N) I  (NAME-If)
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The semantics of this instruction is that the named subprocesses commence executing in 

the current instant at the indicated interfaces. The TCWC blocks until all of the subpro

cesses have terminated. At that point, control is passed to the next instruction.

A.4.8J Guarding - Watching For Signals

The watching-clause of the TCWC instruction declares that the invoked subprocesses are 

interrupted in the current instant if an event on any of the indicated signals occurs and it 

associated counter is decremented zero. The counter mention is optional with a default 

count of 1 being assumed. The form of this variant of the call instruction is as follows:

try
...call-clauses... 

watching
when C {NAME-1) S {NAME-1) goto h(NAME-l);
when C(NAME-2) S (NAME-2) goto L (NAME-2);
•  •  •

when C(NAME-N) S(NAME-N) goto h(NAME-N)

The TCWC is determinisuc. In case more than one when clause is triggered, the first-men

tioned one takes priority. That is, if more than one counter becomes zero because two 

S (NAME-1) occurred in the same instant then control is transferred to the L (NAME-1) 

of that clause. The other possibility is ignored.

A.4.8.4 Preemption - Handling Exceptions 

The TCWC instruction also allows for handlers for exceptions to be declared. After an 

exception is raised by any one of the subprocesses, control is recovered from all the sub

processes, preempting any which were executing. Control is then transferred according to 

the handle clauses of the instruction. The form of this variant of the instruction is as fol

lows:
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try
...call-clauses... 
catch

handle E(NAME-l) goto h (N A M E -l); 
handle E(NAME-2) goto L (NAME-2);
•  •  •

handle E(NAME-M) goto h(NAME-M)

The TCWC is deterministic. In case more than one handle clause could be taken because 

multiple exceptions were raised in the current instant then the first-mentioned one takes 

priority. That is, if more than one exception with a handle E (NAME-I) clause in the cur

rent TCWC is raised, then control is transferred to the h (NAME-1) of the first-mentioned 

clause. The other possibility is ignored. *

A.4.9 Process Control

The other process control instructions are extremely simple.

halt
The halt statement serves to break up the flow of computation in separating one 
reactive instant from the next. The current process is halted: control is not returned 
to the caller.

exit
The exit statement returns control to the calling TCWC instruction. If all parallel 
threads of the TCWC have exited then execution continues from the TCWC. Other
wise the TCWC continues to be blocked for the instant.

wait S (NAME-1), S (NAME-2), ... S(NAME-N)

The wait instructions are but shorthands for the equivalent TCWC. subprocess and 
halt structure. This equivalence is shown in Figure A-15.

wait all
The wait all variant is a shorthand that implicitly refers to all visible signals.

I. There needs to be a TCWC-2 to model same-priority exceptions in Esterel. This is 
more difficult because in that case the handlers correspond to call clauses which 
invoke subprocesses. In the case of same-priority exceptions, the handlers are invoked 
in parallel.
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wait S(l), S(2) L(wait): try
call P(wait) 1(1); 

watching
when S(l) goto L(next) 
when S(2) goto L(next) 

L(next): ... continue ...
process P (wait) is 
interface 1(1) L(0) 
L(0): halt
end process P(wait)

Figure A-15. The Expansion of await Instruction
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The Flatten Algorithm

This appendix gives in full the flatten algorithm described in Section 7.2.3.2.

struct BuildState {
graph -- the estimate graph data structure
visited — a table mapping a basic block to its generated estimate
stack -- stack of TCWC that have been called

flatten()
{

BuildState state;
state. graph = a new estimate graph
add to state. graph a start node
// Pretend there is single TCWC that calls all of
// the top-level processes at once and halts if they return
add to state .graph a fork node (with no lowered exceptions)
add an edge from the s t a r t to the f o r k
add to state. graph a c o l l e c t node (with an empty raised set)

add to state, graph a h a l t  lu f f node (with an empty raised set)
add an edge from c o l l e c t to the h a l t la f f
add to state. graph a h a l te d  node (with an empty raised set)

initialize tcwc_f rame with no when and no h a n d le clauses 
stack.push(tcwc_f rame);
foreach process in the top-level of the process-tree {

BasicBlock bb = the first executable instruction in the process 
bb.generate(state, fork);

}
stack.pop();
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B.l BasicBlock::generate
void
BasicBlockt : generate (BulldStatefc state. Estimate *pred) 
// pred may be 0 la which case the caller 
// promises to attach the predecessor somehow
{

If (state.visited contains this basic block) {
If (0 !» pred) {

estimate » state.visited[this]; 
state, graph, attach (pred, estimate);

>
return;

}
if (this basic block is a TCWC) ( 

estlmate_TCWC(state, pred);
} else if (this basic block is a wait or halt) { 

estlmate_wait_or_halt(state, pred);
> else {

estimate_mlsc(state, pred);
>

}
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B.2 BasicBiock::estimate_TCWC
void
BaslcBlock: >estlmate_TCWC(BuildStatefc state. Estimate *pred) 
{

LB = the set of exceptions mentioned in h a n d le clauses of this TCWC 
raised_set = raised clauses of all exception handlers on state. stack. 
add to state. graph a f o r k  node (lowering LE) 
if (0 !■ pred)

add an edge from pred to the f o r k
add to state .graph a collect node with raised_set
mark this basic block as visited in state .visited

by setting state, visited [this bb] » the fork
NS = the set of signals mentioned in when clauses of state. stack 
initialize tcwc_frame with no when and no h a n d le clauses 
foreach [whan C( l )  8(1)  g o to  L ( l ) l {

BaslcBlock bb = target block L ( l )
Signal sig= signal 3(1)
bb.generate(8tate, /*pred*/ 0);
add to state. graph a when node on signal Big and not NS
add an edge from the when to b b ’s estimate
add the when to tcwc_f rame
NS.add(sig);

}

foreach [handle S ( l )  g o to  L ( l ) l {
BaslcBlock bb = target block L ( l )
Exception exc = exception E ( l )
bb.generate(state, /*pred*/ 0);
add to state. graph a h a n d le node on exception exc
add an edge from thehandle to b b 's  estimate
add the h a n d le to tcwc_f rame

BaslcBlock fallout = default successor of this basic block 
fallout.generate(state, collect);
// Handle the subprocesses now that the surrounding context in this process is fully defined: 
// all when-clauses. handle-clauses and the fallout of the TCWC. 
state.stack.push(tcwc_frame); 
foreach [call P ( l )  1 ( 1 ) 1  (

BaslcBlock bb = target block of 1 ( 1 )  in P (1)  
bb.generate(state, fork);

}
state.stack.pop();
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BJ Basic Block ::estimate_wait_halt
void
BaslcBlock*:estlmate_wait_halt(BulldStatefc state. Estimate *pred)
{

raised_set = raised clauses of all exception handlers on state. stack, 
add to state. graph a h a l t i n g  node using raised_set 
if (0 !■ pred)

add an edge from pred to the h a l t i n g
add to state. graph a h a lta d  node using raised_set
mark this basic block as visited in state .visited
by setting state.visitedfthis bb] ■ the h a l t i n g

if (this basic block is a wait) {
BaslcBlock succ = successor basic block o f the wait 
succ.generate(state, /*pred*/ 0);
NS = the set of signals mentioned in urban clauses of the state. stack 
foreach signal in [wait ( 3 ( 1 ) , ... }] {

Signal sig ■ 3( 1 ) ;
add to state. graph a whan node on signal sig and not NS 
add an edge from the when to succ 
NS.add(sig);

}
}

}
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B.4 BasicBlock:: estimate misc
▼old
BasicBlockiiestlaate_alsc(BuildState* state, Estimate *prad, Estimate** last)
(

create aitloata nodas, saving the first estimate node created

foreach instruction in this basic block { 
if (instiuctionisan exit) {

add to state.graph an e m i t  estimate node 
if (0 is pred)

add an edge from pred to the amie estimate 
pred = the emit

> else if (instruction is an unde/) {
add to state.graph an unde/estimate node 
if (0 is pred)

add an edge from pred to the unde/ 
pred s  the unde/

> else if ( instruction is an reguire» {
add to state .graph a reguire estimate node 
if (0 Is pred)

add an edge from pred to the reguire 
pred = the reguire 
create an emit estimate node

> alse {
// ignore it for causality estimation

}
}

if (the last instruction is an exit) {
mark this basic block as visited in state, visited

by setting state .visited[this bb] = the first estimate created 
collect = the collect on top of state. stack 
add an edge from pred to the c o l l e c t

} else if (the last instruction is a rm lam ) {
Exception exc s the exception Efl) of [raise B ( l )  R ( l ) ]  
raised_set = raised clauses of all exception handlers on state. stack. 
add to state .graph a raise estimate node on exc and raised_set 
add an edge from pred to the raise 
mark this basic block as visited in state, visited

by setting state .visited[this bb] = the first estimate created
} else {

if (the last instruction was a p r e s e n t  or select) { 
add to state .graph a s e l e c t  estimate node 
add an edge from pred to the select 

) else if (no estimate was created) {
add to state .graph a null estimate node 
add an edge from pred to the null

}
mark this basic block as visited in state, visited

by setting state .visited [this bb] = the first estimate created 
foreach succ of this basic block

succ.generate(state, last);
>

)
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Compilation of Esterel

This appendix details an example taken from Esterel all the way to compilable C++ 

code. When compiled in conjunction with the NDAM Runtime System defined in Appen

dix D, it forms a complete working module. This example* is a simple button interpreter 

as might be used in a digital watch. The interpreter’s job is to recognize the “lap counter” 

function and to emit certain signals when it is recognized. The following three sections 

illustrate a complete example.

C.l An Esterel Example
The example is assumed to be in a file called h 0 3 . s t r l .

module BUTTONINTERPRETER:
input BUTTON_2 r STOPWATCH_RUNNING; 
output BESET; 
output FROZENTIME;
signal

LAP_START,
LAP_END

in
every BUTTON_2 do

present STOPWATCH_RtJNNING then 
emit LAP_START 

else
present FROZEN_TIME then 

emit LAP_END

I. Adapted from Halbwachs [320], page 28 and 31.
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else
omit RESET 

and praaant 
and praaant 

and every
II

loop
await IJLP_START; 
trap T in

sustain FR0ZEN_T1ME
II await Z<AP_EHD; 

exit T 
and trap 

and loop 
and signal 
and module

C.2 NDAM Assembly Code 
Command: e s t  h 0 3 . s t r l

The assembly code produced by the compiler is as follows:

network N(l) is
top: P(0) P(0) : P(l), P(4)
P(l): P(2), P(3)
P(4): P(5), P(6)
P(6): P(7), P(9)
P(7): P(8)
P(9): P(10) 
type t(unit) 1 
type t(bool) 2
type t(int) -2147483648 2147483647

— ticksignal s(0) t(unit) 
signal s(l) t(unit) 

(2 )signal 
signal s(3) 
signal s(4) 
signal s(5) 
signal s(6) 
input: s(0) 
output: s(3) 
end network N(l)

t(unit) 
t(unit) 
t(unit) 
t(unit) 
t(unit) 
s(l), s(2)

BUTTON_2
STOPWATCH_RUNNING
RESET
FROZEN.TIUE
IAP_START
LAP_END

process P(0) is 
constant R(unit) t(unit) 
constant R(false) t(bool) 
constant R(true) t(bool) 
temporary R(tnpO) t(int)
L (0): undef s(4)

-  0
0

■ 1
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Ml): undef s(5)
L(2)t undaf s(6)
L(3)» try

call P(l) 1(0); 
call P(4) 1(0)

L(4)< exit 
and procaaa P(0)
procasa P(l) la 
lntarfaca 1(0) MO) 
li(0) : try 
call P(2) 1(0); 
watching
whan a(l) goto L(l)
L(l)> try
call P(3) 1(0);
watching
whan a(l) goto L(2)
L(2)i goto L(l) 
end procaaa P(l)
procaaa P(2) Is 
lntarfaca 1(0) M0)
M0) t halt 
and procaaa P(2)
procaaa P(3) la 
Interface 1(0) M0)
M 0 ) : require a(2)
Ml): present not s(2) goto L(4) 
M2): emit 8(5) R(unlt)
M3): goto M9)
M4): require 8(4)
L(5): present not a(4) goto M8) 
L(6): emit 8(6) R(unlt)
L(7): goto L(9)
I>(8): emit s(3) R(unlt)
1.(9): halt 
end process P(3)
process P(4) Is 
Interface 1(0) L(0) 
exception E(0) t(unlt)—  T 
L(0): try

call P(5) 1(0); 
watching

when s(5) goto 1.(1) 
L(l): try

call P(6) 1(0); 
catching

handle e(0) goto M2)

515

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

L(2): goto L(0) 
and procaaa P(4)
procaaa P{5) ia 
intarCace 1(0) £>(0)
1.(0): halt 
and procaaa P(5)
procaaa P(6) la 
interface 1(0) MO)
MO) * try

call P(7) 1(0); 
call P(9) 1(0)

1.(1): exit 
and procaaa P(6)
procaaa P(7) Is 
Interface 1(0) M0)
M 0 ) : try

call P(8) 1(0); 
watching

when s(0) goto Ml)
Ml) : goto M0) 
and procaaa P(7)
procaaa P(8) is 
interface 1(0) M0)
M0) > emit s(4) R(unit)
Ml) : halt 
and process P(8)
process P(9) is 
interface 1(0) L(0)
M0) : try

call P(10) 1(0); 
watching

when s(6) goto Ml)
Ml) : raise e(0) R(unit) 
end process P(9)
process P(10) is 
interface 1(0) L(0)
M0) : halt
end process P(10)

C.3 Generated C++ Code

Command:ndam -c o d e g e n  h03.ndam

The C++ code generated for the example is as follows:
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( i n c l u d e  < a s s e r t . h >
( I n c l u d e  ‘ H R S /H R S N e tw o rltln s ta n ca .h *
a c e t i c  H R 8 8 ig n a l  SCI -  {

( / • p r e s e n c e * /  N R S S lg n a l t lUM H W . .  / • p o t e n t i a l * /  PAUK > , / /  N ( l ) . s ( 0 )
C / • p r e s e n c e * /  N R S S lg n a lt : UNKNOWN, / ‘ p o t e n t i a l * / "  PAL8H 1 , / /  N ( l ) . s ( l )
( / ‘ p r e s e n c e * /  H R S81gnalttU R IR U R R , / * p o t e n t l a l » /  PA U K  ) , / /  H ( l ) . s ( 2 )
( / ‘ p r e s e n c e * /  N R S S lg n a li : UNKNOWN, / * p o t e n t i a l * /  PAUK > , / /  H ( l ) . s ( 3 )
[ / ‘ p r e s e n c e * /  HRKSlgnslttOHKKORR, / ‘ p o t e n t i a l * /  PAUK ) , / /  H ( l ) . s ( « )
( / ‘ p r e s e n c e * /  H M S lg n a l i  i OHKRORR, / ‘ p o t e n t i a l * /  PAUK ) , / /  R ( l ) . s ( S )
( / ‘ p r e s a n c a * /  N R S S lg n a l1 1 UNKNOWN, / • p o t e n t i a l * /  PAUK > , / /  H ( l ) . s ( S )

>>
s t a t i c  N R S C o u n ter  CM -  (
1;
s t a t i c  N R S K x cep tlo n   B [I -  (

( / ‘ s t a t u s * /  NXSKxceptlonitLOW KRBD, / ‘ d e p t h * /  - 1  } , / /  P ( 4 ) .E ( 0 )
I j
s t a t i c  H R K 8enaor  I t ]  -  (
II
s t a t i c  N R S ra lu e   VO -  0 ;
s t a t i c  H R S ra lu e   V I -  1 ;
s t a t i c  N R S ra lu e  _ V 2  -  / ‘ n u l l * /  0 ;
s t a t i c  R R B T ceo  t C a l l   t c w c . c a l l s . t o p (]  -  {

( / * p r o c e a s * /  1 ,  / * p c * /  0 ) ,
]/
s t a t i c  NRSTcwc  tc w c .c o p  •  (

/ • c a l l a * /  1 ,   t c w c . c a l l s . t o p ,
/ • r e q u i r e * /  (  / ‘ s i g n a l s * /  0 ,  0 ,  / * ( u n u s e d ) u * /  - I  I ,
/ • w h e n e * /  0 ,  0 ,
/ • h a n d l e s * /  0 ,  0 ,
/ • p c i * /  1 ,
/ • p c 2 * /  2 ,
/ • p c R * /  3 ,
/ • u * /  -1

>;
s t a t i c  H R S index   r e q u i r e . s l g n a l e O []  ■ { 2 )»
s t a t i c  H R S R oquiro   r e q u ir e O  -  ( / ‘ n s l g n a l s * /  1 ,  / ‘ s i g n a l s * /   r e q u i r e . s l g n a l s O ,  / * u * /  0 ) ;
s t a t i c  K R S index   r e q u i r e . s i g n a l a l C l  ■ { 4 J ;
s t a t i c  H R aX eq u ire   r a q u l r e l  *  ( / ‘ n s l g n a l s * /  1 ,  / ‘ s i g n a l s * /   r e q u i r e . s i g n a l s l ,  / * u * /  1 1 ;
s t a t i c  H R S T c w c iiC a ll _ t c e c _ c a l l s 2 t J  •  (

{ / ‘ p r o c e s s * /  1 1 ,  / * p c * /  0 ) ,
);
s t a t i c  N R S lndex   t c w c . r e q u i r e . s l g n a l s 2 [ )  -  { 1 ) i
s t a t i c  NR8Tcwct tW hen  tcw c  w hens2  [ ] •  (

( / ‘ c o u n t e r * /  - 1 ,  / ‘ s i g n a l * /  1 ,  / * p c * /  3 ) ,
I;
s t a t i c  NKSTcwc  tc w c2  •  (

/ • c a l l s * /  1 ,   t c * c _ c a l l s 2 ,
/ • r e q u i r e * /  t  / ‘ n s l g n a l s * /  1 ,  / ‘ s i g n a l s * /   t c w c _ r e q u l r e _ s i g n a l s 2 ,  / * u * /  2 1 ,
/ • w h e n e * /  1 ,   tcw c  w h e n s2 ,
/ • h a n d l e s * /  0 ,  0 ,
/ • p c i * /  1 ,
/* p c 2 * /  2 .
/ • p c R * /  3 ,
/ • u * /  2

>,-
s t a t i c  N R 8 T c w c ttC a ll  t c e c _ c a l l s 3 []  -  (

{ / ‘ p r o c e s s * /  1 0 , /* p c * /  0 ] ,
>;
s t a t i c  N R S lndex   tc w c  r e q u i r e  s i g n a l s 3 [ ]  •  ( 1 } /
s t a t i c  N RSTcw cttW hen  t c w c .w h e n s l [ ]  •  {

( / ‘ c o u n t e r * /  - 1 ,  / ‘ s i g n a l * /  1 ,  / * p c * /  6 ] ,
);
s t a t i c  HRSTcwc  tc w c3  •  {

/ • c a l l s * /  1 ,   t c w c _ c a l l s 3 ,
/ • r e q u i r e * /  ( / ‘ n s l g n a l s * /  1 ,  / ‘ s i g n a l s * /   t c w c . r e q u i r e .s i g n a l s ! .  / * u * /  3 ) ,
/ • w h e n e * /  1 ,   tc w c .w h e n s l ,
/ • h a n d l e s * /  0 ,  0 ,
/ • p c i * /  4 ,
/* p c 2 * /  5 ,
/*P C N */ 6 .
/ * u * /  3

> I
s t a t i c  NRSTcwct t C a l l   t c w c . c a l l s ! U  -  {

( / ‘ p r o c e s s * /  7 ,  /* p c • /  0 ) ,
I;
s t a t i c  N R S lndex   t c w c . r e q u l r e . s i g n a l s ! [1 -  ( 0 ) ;
s t a t i c  N RSTcw cttW hen  tc w c .w h e n s ! []  •  {

{ / ‘ c o u n t e r * /  - 1 ,  / ‘ s i g n a l * /  0 ,  / * p c * /  3 1,
);
s t a t i c  NRSTcwc  tc w c 4 •  (
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/ • c a l l s * /  1 ,   t c a c _ c a l l a 4 ,
/ • r e q u i r e * /  { / ‘ n a i g n a l a * /  1 ,  / ‘ s i g n a l s * /   t c a c _ r e q u i r e _ s l g n a l s 4 ,  / * u * /  4 1,
/ • w h e n a * /  1 ,   t c e c _ a b a n s 4 ,
/ • h a n d l e s * /  0 ,  0 ,
/ • p e l * /  1 .
/ • p c 2 * /  2 ,
/ • p e ■ • /  3 ,
/ • u * /  4

>;
a C a e lc  N RSTeaci x C a l l   t c a c _ c a l l a 5  [ ]  -  (

t  / • p r o c a a a * /  S , / • p c * /  0 >,
}»
a t a t i c  N R S lndex   t e a c _ r a q u l r e _ a l g n a l a S C l  * ( 6 ) j
a C a e lc  NRSTcwctxW hen  tc n c _ « J ia n a S  t l  •  (

t  / ‘ c o u n t e r * /  - l ,  / ‘ s i g n a l * /  6 ,  / • p c * /  3 ) ,
>;
a t a t i c  NR8TCWC  tc w cS  •  (

/ • c a l l a • /  1 ,   t c a c . c a l l a S r
/ • r e q u i r e * /  { / ‘ n a i g n a l a * /  1 ,  / ‘ s i g n a l s * /   t c a c _ r e q u l r e _ s i g n a l a 5 ,  / ‘ u • /  S >,
/ • a h e n a * /  1 ,   t c a c . a h e n s S ,
/ • h a n d l a a * /  0 ,  0 ,
/ • p e l * /  1 ,
/ * p c 2 * /  2 .
/ • p c H * /  3 ,
/ • u * /  S

)>
a t a t i c  N R S T c a c t iC a l l   t c a c _ c a l l a S t l  ■ {

( / ‘ p r o c a a a * /  6 ,  / » p c * /  0 >, 
t / ‘ p r o c a a a * /  4 ,  / * p c * /  0 ) ,

)»
a t a t i c  HRSTcac  t c a c f i  -  {

/ • c a l l a * /  2 ,   t c a c . c a l l a G .
/ • r e q u i r e * /  { / • n a i g n a l a * /  0 .  / ‘ a l g n a l a * /  0 ,  / * u * /  S J ,
/ • a h a n a * /  0 ,  0 ,
/ • h a n d l a a * /  0 ,  0 ,
/ • p c i * /  1 .
/ • p c 2 * /  2 ,
/ • p c H • /  3 .
/ • u * /  6

)(
a t a t i c  N R S T c a c t iC a l l   t c a c _ c a l l a 7 I I  -  (

( / ‘ p r o c a a a * /  a ,  / * p c * /  0 I .
>i
a t a t i c  N R S lndex   t c a c . r e q u i r e _ s l g n a l s 7 [ ]  -  ( 5 ) ;
a t a t i c  N R S T cac ttK h en   t c a c _ a h e n a 7 [] •  (

( / ‘ c o u n t e r * /  - 1 ,  / ‘ s i g n a l * /  5 ,  / * p c * /  3 J ,
11
a t a t i c  NRSTcwc  t c a c 7  -  {

/ • c a l l a * /  1 ,   t c w c _ c a l l s 7 ,
/ • r e q u i r e * /  { / ‘ n a i g n a l a * /  1 ,  / * a i g n a l a * /   t c w c _ r e q u l r e _ s l g n a l s 7 ,  / * u * /  7 ) ,
/ • a h e n a * /  1 ,   tc a c _ w h e n a 7 ,
/ • h a n d l a a * /  0 ,  0 .
/ • p c i * /  1 .
/* p c 2 * /  2 .
/ • p c H * /  3 ,
/ • u * /  7

> I
a t a t i c  N R 8T cact t C a l l   t c a c . c a l l s B . t ]  "  (

{ / ‘ p r o c a a a * /  3 ,  / * p c * /  0 ) ,
1)
a t a t i c  N R S T c a c t iH a n d le   t c a c _ h a n d l e a 8 t l  “  {

{ / ‘ e x c e p t i o n * /  0 ,  / * p c * /  6 ) .
\ t
s t a t i c  NRSTcwc  tc w c 8 -  (

/ • c a l l a * /  1 ,   t c w c _ c a l l * 8 ,
/ • r e q u i r e * /  { / ‘ n a i g n a l a * /  0 ,  / ‘ s i g n a l s * /  0 .  / * u * /  8 J ,
/ • a h e n a * /  0 ,  0 ,
/ • h a n d l e s * /  1 ,   tc w c  h a n d le a S ,
/ • p c i * /  4 ,
/ * p c 2 * /  5 ,
/ • p c N * /  S ,
/ * u » /  8

);
s t a t i c  N R S T cw cx tC a ll  t c w c _ c a l l s 9 1 ]  * {

{ / ‘ p r o c e e s * /  9 ,  / * p c * /  0 ) ,
{ / ‘ p r o c e s s * /  2 .  / * p c * /  0 J ,

)»
s t a t i c  NRSTcwc  tc w c 9  -  {

/ • c a l l s * /  2 ,   t c a c _ c a l l s 9 ,
/ • r e q u i r e * /  { / ‘ n a i g n a l a * /  0 ,  / ‘ s i g n a l s * /  0 ,  / * u * /  9 ) ,
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/•w faen s• /  0 ,  0 ,
/ • h a n d l e s * /  a ,  0 ,
/ • p c i * /  2 .
/ • p c 2 V  3 .
/ • p c H * /  4 ,
/ • u * /  9

) /
s t a t i c  H R S ln d ax   C T _localO [] -  { 5 ,  6 ,  3 ) ,
s t a t i c  H R 8 in d ex  _ a _ l o c a l l ( l  -  { 6 ,  3 ) ;  
s t a t i c  H R S ln d ax  _ U _ l o c a l 2 [ ]  -  ( S . 6 ,  3 } ; 
s t a t i c  H R S ln d ax  _ a _ d e l e g a t e d 2 1 ]  -  { 11 )» 
s t a t i c  H R S ln d ax  _ J J _ l o c a l 3  (1 •  ( S ,  f ,  3 h
s t a t i c  H R S ln d ax   U _ d e le g a t a d 3 t l  -  { 10 I ;
s t a t i c  H R S ln d ax   a _ l o c a l 4 l l  -  (  4 >»
s t a t i c  H R S ln d ax   0 _ d e l e g a t e d 4 t l  * ( 7 1 /
s t a t i c  H R S ln d a x  _ _ U _ d a la g a te d 5 t l  •  { 5 )»
s t a t i c  H R S ln d ax   ( J _ lo c a l 6 ( ]  •  { 4 ) j
s t a t i c  H R S ln d ax  _ a _ d e l e g a t e d £ [ ]  -  ( 6 ,  4 } ;
s t a t i c  H R S ln d ax  _ 0 _ l o c a l 7 ( ]  -  { 4 i t
s t a t i c  H R 8 In d e x  _ H _ d e l e g a t e d 7 [1 * { 8 ) ;
s t a t i c  H R S ln d a x   C T _ lo c a l8 [ ]  -  { 4 ) ;
s t a t i c  H R 81ndax  _ 0 _ d e l e g a t e d 8  [ ]  — 1 3  1 /
s t a t i c  H R S ln d ax   U _ lo c a l 9 [ ]  * { 5 ,  6 , 3 ,  4 } /
s t a t i c  H R S ln d ax   a _ d e l e g a t e d 9 U  •  ( 9 .  2 ) i
s t a t i c  N R S P o te n t ia l _0 (1  -  (

( / * n l o c a l * / 3 , / • l o c a l * / __(J _ lo c a lO , / ‘ n d e l e g a t e d * / 0 , / • d e l e g a t e d * /  0 ) , / /  P ( 3 ) .L ( 0 )
( / ‘ n l o c a l * / 2 , / • l o c a l * / __D _ l o c a l l , / • n d e l e g a t e d * / 0 . / • d e l e g a t e d * /  0 ) , / /  P ( 3 ) .L ( 4 )
t  / ‘ n l o c a l * /  

P ( l ) . L ( 0 )
3 . / • l o c a l * / __U _ lo c a l2 , / • n d e l e g a t e d * / 1 , / ‘ d e l e g a t e d * /  __U _ d e le g a te d 2 ) . / /

{ / * n l o c a l * /  
P ( l ) . L (1)

3 , / • l o c a l * / __O _ lo c a l3 , / ‘ n d e l e g a t e d * / 1 . /  ‘ d e l e g a t e d *  /  __< 7 _ d e le g a ted 3 ) , / /

( / * n l o c a l * /  
P ( 7 ) .L ( 0 )

1 . / • l o c a l * / __(7 _ lo c a l4 , / ‘ n d e l e g a t e d * / 1 . / ‘ d e l e g a t e d * /  __D _ d e le g a te d 4 ) . / /

( / ‘ n l o c a l * / 0 , / • l o c a l * / 0 ,  / ‘ n d e l e g a t e d * /  1 ,  / ‘ d e l e g a t e d * /  __( 7 _ d e le g a te d 5  ) , / /  P ( 9 ) ■ L (0
( / ‘ n l o c a l * /  

P (6 )  ,L (0 )
1 , / • l o c a l * / _ 0 _ l o c a l 6 . / • n d e l e g a t e d * / 2 . / ‘ d e l e g a t e d * /  __0 _ d e le g a te d 6 ) , / /

( / ‘ n l o c a l * /  
P ( 4 ) ,L (0 )

1 . / • l o c a l * / _ a _ l o c a l 7 . / ‘ n d e l e g a t e d * / 1 , / ‘ d e l e g a t e d * /  __0 _ d e le g a te d 7 ) , / /

( / ‘ n l o c a l * /  
P ( 4 ) . L ( l )

1 . / • l o c a l * / __U _ lo c a l8 , / ‘ n d e l e g a t e d * / 1 , / ‘ d e l e g a t e d * /  __U _ d a le g a te d 8 ) , / /

( / ‘ n l o c a l * /  
P ( 0 ) .L ( 3 )
)>
s t a t i c  N R S In p u t

4 ,  / ‘ l o c a l * /  

_ I ( )  -  (

_ 0 _ l o c a l 9 . / • n d e l e g a t e d * / 2 , / ’ d e l e g a t e d * /  __0 _ d e le g a te d 9 ) . / /

{ / ‘ s i g n a l * /  0 ,  / * l o * /  N R S N e tw o rk ::re a d , [ / * s l z e * /  0 ,
( / ' s i g n a l * /  1 ,  / * l o * /  NRSM atw ork: : r a a d ,  { / ‘ s i z e * /  0 ,
t  / ‘ s i g n a l * /  2 ,  / * l o * /  N R S N etw o rk :-. r e a d ,  C / * s l z e * /  0 ,

/ • ▼ a lu a * /
/ • v a l u e * /
/ • v a l u e * /

) ) , / /  H ( l ) .  
) > , / /  N C I)• 
1 > , / /  N C I).

■ CO)
■ C l)
■ C2)

C / ‘ s i z e * /  0 ,  / ‘ v a l u e * /  0 ) > , / /  NC1) . s C3)

) t
s t a t i c  N R S O utpu t  0C1 -  C

C / ‘ s i g n a l * /  3 ,  / * l o * /  N R S N e tw o r k : :w r l te ,
) i
s t a t i c  N R S P ro c e ss !  t S t a t e
 C O D E .to p (N R 8 H e tw o rk In s ta n c e a  n e tw o rk ,  N R S P ro c e ssa  s e l f )
C

N R S P r o c e s s : iS t a t e  s ;  
s w i t c h  ( s e l f . p c )  C 
c a s e  0 t / /  to p (T A IL ) 
c a s e  1 : / /  top(SY N C ) 
c a s e  2 : / /  top(HRAO)

s  -  n e tw o rk .T C W C (s e lf ,   tc w c _ to p ,  (NRSTcwc: tP h a s e )  s e l f . p c ) ;
i f  (N R S P ro c e s s t tCONTnrniNO I -  s )  

r e t u r n  at  
s e l f . p c  “  3 ;
/ /  f a l l t h r u  

c a s e  3 : / /  t o p ( d o n e )  
s e l f . u  -  -1>
r e t u r n  N R S P ro cess  1 1  STABLE; 

d e f a u l t : / /  t h i s  I s  a n  e r r o r o n e o u s  p c  v a l u e  ( J u s t  r e t u r n  s t a b l e )  
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro c e ss : :STABLB>

)
)
s t a t i c  N R S P ro c e s s : : S t a t e
 C Q D B lC N R S N etw ork lnstaucea  n e tw o r k ,  N R S P ro c e ssa  s e l f )

d o  (
s w i t c h  ( s e l f . p c )  ( 
c a s e  0 : / /  L (0 )
n e tw o r k .S  [4 ]  . p r e s e n c e  •  N R S S lg n a l t : UNKNOWN; 
n e t w o r k .8 ( 5 ) . p r e s e n c e  -  N R S 8 1 g n a l:: UNKNOWN;
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n e tw o r k .a  161 . p r e s e n c e  -  N R 881gnal i  sUNMRNINs 
■ e l f . p c  -  1 ;  
c o n t i n u e i
c a s e  I s / /  L (3 )(T A IL ) 
c u e  2 s / /  1 , ( 3 1 ( 8 0 0  
c a s e  3 s / /  1 ,(3) (HEAD!
(

N R S P r o c e s a s s S ta t e  a -  n e tw o rk .T C W C ta e lf ,   tcw c  9 ,  ( N R ST cw cssPhaae) ( a e l f  . p c - 1 ) ) ;
I f  (N R S P ro ceses  iCOHTUTOINO I -  a ) 

r e t u r n  as
1
c o n t in u e s  
c u e  4 s / /  1 ,(4) 
s e l f . u  -  - i s
r e t u r n  N K S P roceaas sTBKMINATBDs

d e f a u l t s / /  t h i s  l a  a n  e r r o r o n e o u a  p c  v a l u e  ( j u a t  r e t u r n  s t a b l e )  
a e l f . u  -  - i s
r e t u r n  N R S P ro ceaa 11  STABLE;
1

> w h i le  ( l l s
)
a t a t i c  N R S P ro c e a a s s S ta te
 CODE2 (N R S N e tw o rk ln a ta n c e a  n e tw o r k ,  N R S P ro c eaa*  a e l f )
(

d o  (
■ w itc h  ( a e l f . p c )  ( 
c a a e  O s / /  L (0 )(T A IL ) 
c a s e  I s / /  1 ,(0 ) (SYNC) 
c a a e  2 s / /  L(0)(HEAD)
(

t l l l8 P r o c e a a s : S t a t e  a  -  n e tw o r k .  TCWC ( a e l f ,   tc w c 7 , (N RSTtnrcs: P h a s e )  ( s e l f . p c - O ) ) ;
i f  (N R S P roceaas  sCONTINUING ! .  a) 

r e t u r n  as
)
c o n t in u e s
c a s e  3 s / /  M l )  (TAIL) 
c a a e  4 s / /  L (1)(SY N C ] 
c a a e  5 s / /  L ( l )  (HBAO)
(

N K S P roceaas  s S t a t e  a -  netw ork.TC W C  ( a e l f ,  tcw c  8 ,  {NRSTcwc s s P h a a e )  ( s e l f . p c - 3 ) ) s
I f  (N R 8 P ro ceaas  sCONTINOTNQ ! •  a ) 

r e t u r n  as
)
c o n t in u e s  

c a s e  6 s / /  L (2 ) 
s e l f . p c  -  Os 
c o n t in u e s
d e f a u l t s / /  t h i s  l a  a n  e r r o r o n e o u a  p c  v a l u e  ( j u s t  r e t u r n  a t a b l e )  
a e l f . u  -  - 1 ;
r e t u r n  N R S P roceaa  s s ST ABLE j
)

) w h i le  ( 1 ) ;
)
s t a t i c  N R S P ro c e a a s s S ta te
 C 0 D B 3 (N R S N etw o rk ln a tan cea  n e tw o r k ,  N R S P roceaa*  a e l f )
(

do  (
s w i tc h  ( s e l f . p c )  ( 
c a a e  O s / /  L (0 )(T A IL ) 
c a a e  I s / /  L(0)(SYNC> 
c a a e  2 s / /  L (0)(H E A M  
(

N R S P ro ceaas  s S t a t e  a  -  n e tw o rk .T C W C (s e lf ,   tc w c 6 , {NRSTcwcs s P h a s e )  ( a e l f  . p c - O ) ) ;
I f  (N R S P ro ceaa : sCONTINUING I .  a ) 

r e t u r n  as
)
c o n t in u e s  
c a s e  3 s / /  L ( l )  
s e l f . u  -  - 1 ;
r e t u r n  N R S P roceaa  ■: TERMINATED;

d e f a u l t s / /  t h i s  l a  a n  e r r o r o n e o u a  p c  v a l u e  ( J u s t  r e t u r n  s t a b l e )  
s e l f . u  -  - I ;
r e t u r n  N R S P roceaa  s s STABLE;
)

) w h i le  ( l ) s
)
s t a t i c  N R SProceaa s s S t a t e
 C 0 D R 4 (N R S N etw o rk ln a tan cea  n e tw o r k ,  N R S P roceaa*  s e l f )
(

d o  (
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s w i t c h  ( s e l f . p c )  { 
c a s e  0 : / /  L (0 ){ T A IL ) 
c a s e  1 > / /  L(0){SY NC) 
c a s e  2 t  / /  L(0){HEAD)
{

N R S P r o c e s s ; :S t a t e  a  •  n e tw o r k .  TCWC ( s e l f ,   tc w c S , (NRSTcwc c > p h a s e )  ( s e l f  . p c - O ) ) »
I f  (N R 8 P ro cea sc  iCONTlNUlNU 1 ■ s )  

r e t u r n  s j
)
c o n t i n u e ;  
c a s e  3 c / /  L ( l )
n e tw o r k .8 ( 0 ) . s t a t u s  -  N R H E rc e p tio n i; RAISED; 
i f  ( n a t w o r k .e d e p t h  < n e tw o r k . 8 ( 0 ) . d e p t h )  

n e t w o r k .e d e p t h  -  n e tw o r k .E C O ] .d e p th ;  
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro c ess  c c RAISED;

d e f a u l t ; / /  t h i s  l a  a n  e r r o r o n e o u a  p c  v a l u e  ( l u s t  r e t u r n  a t a b l e )  
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro c ess  c c STABLE;
)

> w h i l e  ( 1 ) ;
J
s t a t i c  N R 8 P ro c e ss  c c S t a t e
_ C O D B S (N R S N e tw o rk ln a ta n c e a  n e tw o rk ,  N R 8 P ro c e ss e  s e l f )
(

d o  (
s w i t c h  ( s e l f . p c )  ( 
c a a e  0 c / /  L (0 ) 
s e l f . u  •  - 1 ;
r e t u r n  N R SProcess;cST A B L E ;

d e f a u l t ; / /  t h i s  i s  a n  e r r o r o n e o u a  p c  v a l u e  ( j u s t  r e t u r n  s t a b l e )  
s e l f . u  •  - I ;
r e t u r n  N R S P ro c e ss ; ;  STABLE;
)

) w h i l e  ( 1 ) ;
)
s t a t i c  N R S P ro c e ss ; ; S t a t e
_ C O D B S (N R S N e tw o rk ln a ta n c e a  n e tw o rk ,  N R S P ro c e ss a  s e l f )
(

d o  (
s w i t c h  ( s e l f . p c )  ( 
c a s e  0 ; / /  L (0 )(T A IL )  
c a a e  1 : / /  L (0 )(S T N C ) 
c a s e  2 : / /  L(OHHEAD)
(

N R S P r o c e s s ; e s t a t e  s  -  n e tw o rk .T C W C (s e lf ,   t c w c 4 ,  (N R ST cw c;; P h a s e )  ( s e l f . p c - O ) ) ;
I f  (N R S P ro c e s s ; cCaNTINUING I -  s )  

r e t u r n  s ;
)
c o n t i n u e ;  
c a s e  3 ; / /  L ( l )  
s e l f . p c  -  0 ;  
c o n t i n u e ;

d e f a u l t : / /  t h i s  I s  a n  e r r o r o n e o u s  p c  v a l u e  ( j u s t  r e t u r n  s t a b l e )  
s e l f . u  •  - 1 ;
r e t u r n  N R S P ro c e ss : :  STABLE;
)

) w h i l e  ( 1 ) ;
1
s t a t i c  N R S P r o c e s s :c S ta te
 C O D B 7 (N R S N etw o rk ln a tan cea  n e tw o rk ,  N R S P ro c e ssa  s e l f )
(

d o  (
s w i t c h  ( s e l f . p c )  { 
c a s e  0 : / /  L (0 )
n e tw o r k .S [ 4 ]  . p r e s e n c e  -  N R S S ig n a l : ; PRESENT;
s e l f . p c  -  1 ;
c o n t i n u e ;
c a s e  1 : / /  L ( l )
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro cess  : :  STABLE;

d e f a u l t : / /  t h i s  I s  a n  e r r o r o n e o u s  p c  v a l u e  ( j u s t  r e t u r n  s t a b l e )  
s e l f . u  •  - 1 ;
r e t u r n  N R S P ro c e ss c : STABL^/
)

> w h i l e  ( 1 ) ;
)
s t a t i c  N R S P ro c e ss : : S t a t e
 C O D E S (N R S N etw o rk ln a tan cea  n e tw o rk ,  N R S P ro c e sa a  a e l f )
(
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do (
s w i t c h  ( s e l f . p c )  ( 
e s s e  O s / /  L (0 ) 
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro c e ss 11  STABLE;

d e f a u l t s / /  t h i s  I s  a n  e r r o r o n e o u s  p c  v a l u e  ( j u s t  r e t u r n  s t a b l e )  
s e l f . u  -  - 1 ;
r e t u r n  N R S P ro c e ss 11  STABLE;
)

> w h i le  ( l ) r
)
s t a t i c  N R S P ro c e ss  s 1S t a t e
 C Q D B 9(N R S N etw ork lna tancea  n e tw o r k ,  N R S P ro c e ss a  s e l f )
{

d o  (
s w i t c h  ( s e l f . p c )  ( 
e s s e  Ot / /  L (0 )  (TAXI*) 
e s s e  i s / /  L(O)CSTBC) 
c a s e  2 s / /  M O ) (HM D)
(

N R S P ro c e s s s ■S t a t e  s  -  n e tw o rk .T C W C (s e lf ,   tc w c 2 ,  (N R S T cw c tsP h ase ) ( a e l f . p c - O ) )>
I f  (N R S P ro cess  1 tCOWTINUINU I -  » ) -  

r e t u r n  s t
)
c o n t i n u e r

c a s e  3 s / /  L (1 )(T A IL ) 
c a s e  4 s / /  M l)(S Y N C ) 
c a a e  5 s / /  L (1)(H R A M  
(

N R S P r o c e s s s s S ta te  s  -  n e tw o rk .T C W C (s e lf ,   tc w c 3 ,  (N R S T cw c :tP h a se )  ( s e l f . p c - 3 ) ) r
I f  (N R S P r o c e s s i : CONTINUING I -  s )  

r e t u r n  s r
)
c o n t i n u e r  
c a s e  S i l l M 2 ) 
s e l f . p c  * 3 r 
c o n t i n u e r

d e f a u l t s / /  t h i s  i s  a n  e r r o r o n e o u s  p c  v a l u e  ( j u s t  r e t u r n  s t a b l e )  
a e l f . u  -  - I t
r e t u r n  N R S P ro cess  s s STABLE;
)

) w h i le  ( l ) r
)
s t a t i c  N R S P ro cess  s t S t a t e
 C O D B IO (N R S N etw ork lnatancea  n e tw o r k ,  N R 8 P ro c e ss a  s e l f )
(

do  (
s w i t c h  ( s e l f . p c )  ( 
c a a e  O s / /  L (0 )
(

N R S P ro c e sss  s S t a t e  s  -  netw ork .R E Q U IR E  ( s e l f ,   r e o u i r e O )  r
I f  (N R S P ro cesss  sCONTINUINO I -  s )  

r e t u r n  s ;
)
s e l f . p c  -  1 ; 
c o n t i n u e r  
c a s e  I s / /  M l )
I f  (N R S S lg n a ls : ABSENT - -  n e tw o r k .S [ 2 ]  . p r e s e n c e )  ( 

s e l f . p c  -  2 ; 
c o n t i n u e r}

s e l f . p c  -  3 ;
c o n t i n u e r  
c a s e  2 i l l L (4 )
(

N R S P r o c e s s s s S ta te  s  -  n e tw o rk .R E Q U IR E (s e lf ,  r e q u i r e l l r
I f  (N R S P ro cesss  sCONTINUINO I -  s )  

r e t u r n  s r
)
s e l f . p c  -  5 ; 
c o n t i n u e r  
c a s e  3 s / /  L (2 )
n e tw o r k .8 ( 5 1 . p r e s e n c e  -  N R S S lg n a l t : PRESENT;
s e l f . p c  > 4 ;
c o n t i n u e r
c a a e  4 s / /  L (9 )
s e l f . u  -  - l r
r e t u r n  N R S P ro cess  s s STABLEr 

c a s e  5 s / /  L (S )
I f  (N R SSlgnalttA B S B N T  • -  n e tw o r k .3 ( 4 ) . p r e s e n c e )  (
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a e l f . p c  -  fij 
c o n t i n u e !

>
a e l f . p c  ■ 7 i  
c o n t i n u a l  
c a a a  f i t / /  L (8 )
n e tw o rk .S C 3 ]  .p r e a e n e e  -  N R S 8 ig n a ls  tPRBSBHTi 
a e l f . p c  -  4 i  
c o n t i n u a l  

c a a a  7 t / /  b ( 6 )
n e t w o r k .S [ 6 ] . p r e a e n e e  •  N R S S lg n a lt:P R S S 8 H T |
■ a l f . p c  -  4 i  
c o n t i n u a l
d e f a u l t t / /  t b l a  l a  a n  a r r o r o n e o u a  p c  v a l u e  ( l u a t  r e t u r n  a t a b l e )  
■ a l f . u  •  - l i
r e t u r n  N R S P roceaattS T A B L E !
)

) w h i l e  ( l ) i
)
a t a t i c  N R S P r o c a a a t tS ta te
 C O D S 1 K N R S N etw o rk ln a tan cea  n e tw o r k ,  N R 8 P ro c e aa a  a a l f )
(

d o  (
a w i t c h  ( a a l f . p c )  ( 
c a a a  O t/ /  L {0) 
a e l f . u  •  - 1 i
r e t u r n  N R S P ro c e a a 11  STABLE*

d e f a u l t i / /  t h l a  l a  a n  e r r o r o n e o u a  p c  v a l u e  ( j u a t  r e t u r n  a t a b l e )  
a e l f . u  •  - 1 ;
r e t u r n  N R S P roceaa  11  STABLBi
)

) w h i le  ( l ) i
)
a t a t i c  N R S P roceaa   P ( ]  -  (

( / • p c • / 0, / • u * / - 1 , / • d e p t h * / 1 . / ’ • t a b l e * /  PALSB. /•CODB’ /  __C 0D 8_ top  ) . / /  s y n t h e t i c  t o p l e r e l
( / • p c * / 0, / • u * / - 1 , / • d e p t h * / 0, / ’ • t a b l e * /  PAL8B, /•C O D E */ __C0DB1 ) , / /  P ( 0 )
{ / • p c * / 0, / » u  • / - 1 , / • d e p t h * / - 1 , / ’ • t a b l e * / PALSB. / ’ CODB*/ __C0DB2 > , / /  P (4 )
( / • p c * / 0. / • u * / - 1 . / • d e p t h * / -a . / • ■ t a b l e ’ / PALSB, /•C O D B */ __CODB3 >, / /  P (6 )
{ / • p c * / 0, / • u * / - 1 , / • d e p t h * / - 3 , / ’ • t a b l e ? / PALSB. /•C O D E */ __C0DE4 } . / /  P (9 )
( / • p c * / 0, / • u * / - 1 . / • d e p t h * / - 4 , / ’ • t a b l e ’ / PALSB. / ’ CODB’ /  __CODES > . / /  P (1 0 )
{ / • p c * / 0. / ♦ u * / - 1 , / • d e p t h * / -3  r / • ■ t a b l e * / PALSB. / ’ CODE*/ __CODB6 > . / /  P {7 )
( / • p c * / 0, / • u * / - 1 . / • d e p t h * / ■4 a / • ■ t a b l e * / PALSB. / ’ CODE*/ __C0DB7 ) . / /  P (8 )
( / • p c * / 0, / • u * / - 1 , / • d e p t h * / “ 2 , / ’ ■ t a b l e * / PALSB. /•C O D E */ __C0DB8 I . / /  P fS )
( / • p c * / 0, / • u * / - 1 , / • d e p t h * / "I/ / ’ • t a b l e * / PALSB. /•C O D E */ __CODB9 ) , / /  P ( l>
( / • p c * / 0. / • u * / - 1 . . / • d e p t h * / - 2 , / • ■ t a b l e * / PALSB. / ’ CODE*/ __C0DB10 } . / /  P (3 )
( / • p c * / 0, / • u * / - 1 . / • d e p t h * / - 2 , / ’ • t a b l e * / PALSB. /•CO D E’ /  __CODB11 ) . / /  P (2 )

>;
N R S N e tw o rk ln a ta n c e  N (0 , _ C ,  1 ,  _ B ,  3 ,  _ I ,  1 ,  __0 ,  1 0 ,  O , 1 2 ,   P ,  0 ,   X, 7 ,  _ S ) i
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The NDAM Runtime System

The NDAM Runtime System (NRS) consists of two separable parts. The first is the basic 

minimal runtime system. The second is a debugger interface that incorporates assembly- 

level debugger information. This section covers the minimal runtime system. A larger 

runtime system is available that supports a source-level debugger interface.

The minmal runtime system comprises roughly 346 lines of C++ code that support the 

functions of eval and MARK and the routines to support the operations of the instructions 

TCWC, REQUIRE and WAIT. While the code to support these operations could be inlined, 

a substantial code size savings was realized by placing these functions in a library.

Section D. 1 defines the actual data structures which are used to implement the minimal 

runtime system. Section D.2 defines the support code of the NRS and Section D.3 defines 

the debugger support data structures and how they are used in a simple debugger.
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D.l Data Structures

The basic data structures can be considered in two classes:

Structural: NRSNetwork, NRSNetworklnstance, NRSProcess.
Behavioral: NRSRequire, NRSWait, NRSTcwc,

NRSPotential. NRSSignal, NRSException, 
NRSCounter, NRSValue.
NRSZnput. NRSOutput, NRSSensor

These are explained in the following sections.

D.1.1 NRSNetwork

The network is actually an abstraction of a network instance. This is a sort of wrapper 

which hides the actual details of a particular network instance. This allows code which 

calls an NDAM-implemented module to avoid an explicit dependence on the particulars 

of a network instance. The avoidance of such dependencies is often extremely important 

in C++. This data structure is an ancestor of NRSNetworklnstance: it is never con

structed by a user but is declared as the abstraction of the NRSNetworklnstance of 

the next section.

struct NRSNetwork {
virtual void EVALO * 0; 
virtual void BESET() = 0;
// The default read and write for signals and sensors 
// p is the presence; the value is ignored if p is FALSE 
atatic void read(NRSNetwork& N, boolfc p, NRSlength n, NRSvalue *v) ; 
static void write (NRSNetworkK N, bool p, NRSlength n, NRSvalue *v) ; 
void ‘userData;
NRSNetwork (); 
virtual -NRSNetwork();

};

NRSNetwork;:EVAL
Evaluate the underlying network instance.

NRSNetwork::RESET
Reset the underlying network instance
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NRSNetwork::userData
A pointer to some piece of associated user data. Typically this is the NDBDebugger.

D.1.2 NRSNetworklnstance

This is the actual network instance which is created by the compiler. The static declara

tions are filled in with the pointers to the statically-generated data.

struct NRSNetworklnstance { 
void EVALO ;
void MARK(NRSindex process);
NRSlength NPROCESSES;
NRSProcess *P;
NRSlength NPOTENTIALS;
NRSPotential *U;
NRSlength NSIGNALS;
NRSSlgnal *S;
NRSlength NEXCEPTIONS;
NRSBxceptlon *E;
NRSlength NCOUNTERS;
NRSCounter *C;
NRSlength NINPUTS;
NRSInput *1;
NRSlength NOUTPUTS;
NRSOutput *0;
NRSlength NSENSORS;
NRSSensor *X;
NRSdepth edepth; // the MAX of the exception(s) just raised 
NRSProcess::State REQUIRE(NRSProcessa process,

const NRSRequlrea require);
NRSProcess::State WAIT(NRSProcessa process, const NRSWaita wait); 
NRSProcess::State TCWC(NRSProcessa process,

const NRSTcwct tcwc, NRSTcwc::Phase phase);
>;

NRSNetworklnstance::EVAL
Evaluate the network instance.

NRSNetworklnstance::MARK
The mark algorithm for the network.

NRSNetworklnstance: :NPROCESSES 
NRSNetworklnstance::P

The processes of the network.

NRSNetworklnstance::NPOTENTIALS 
NRSNetworklnstance::U

The potential sets of the processes in the network.
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NRSNetworklnstance :: NSIGNALS 
NRSNetworklnstance:: S

The signals of the network.

NRSNetworklnstance t: NEXCEPTIONS 
NRSNatworklnatance: tE

The exceptions of the network.

NRSNatworklnatance: :NCOUNTERS 
NRSNatworklnatance:sC

The counters of the network.

NRSNetworklnstance: i NINPUTS 
NRSNatworklnatancex si

The inputs of the network. These are indices into S.

NRSNatworklnatance: sNOUTPUTS 
NRSNetworklnstance: sO

The outputs of the network. These are indices into S.

NRSNatworklnatance: sNSENSORS 
NRSNatworklnatance::X

The sensors of the network.

NRSNatworklnatance:: edepth.
The maximum depth of exceptions raised by a TCWC. used in NRS.

D.1.3 NRSProcess

The process structure manages all of the dynamic data relevant for a process. It also 

includes a pointer to the generated-code which executes the process.

struct NRSProcess {
enum State { SYNCING, CONTINUING, 
static const bool TCLOSE[5]; 
static const char * const WORD[5]; 
NRSlndex pc;
NRSlndex u;
NRSdepth depth; 
bool stable;
State (*CODE) (NRSNetworklnstanceft

TERMINATED, STABLE, RAISED };
// used in EVAL; indexed by State 
// used in NDAM codegen 
// the program counter;
I I switch key in code 
// the potential function;
// index NRSlndex U[] (may be -1)
// not runnable 

network, NRSProcess& self);

NRSProcess::pc
The program counter of the process.
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NRSProcess::u
The potential set of the process.

NRSProcasa::depth
The depth of the process for the purpose of exception resolution.

NRSProcasa::atable
A boolean value indicating whether a process has gone stable in the instant.

NRSProceaa::CODE
The code body corresponding to the process.

D.1.4 NDAM Instruction Template Structures

Certain NDAM instructions are implemented by NRS library routines. Those routines 

are controlled by tables. These instructions are therefore completely characterized by 

these statically-generated tables.

D.l.4.1 Require

struct NRSRegulre {
NRSlength naignala;
NRSlndex *signals;
NRSlndex u;

>;

NRSRegulre: mslgnals 
NRSRegulre:: signals

The statically-allocated vector of signal indices that the 'require' is to require.

NRSRegure::u
An index into the potential set vector.

D. 1.4.2 Wait

struct NRSWalt {
enum Phase { TAIL, HEAD >;
NRSRegulre require;

>;

NLSWait::Phase
A ‘wait’ has two phases: there is the TAIL the part which ends an instant: and there is 
the HEAD part which may commence an instant. These values are used within NRS.
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NIiSWait: :require

A ‘wait’ implicitly requires the knowledge of the signals that it mentions. 
This field is that implicit ‘require* instruction.

D.1.4J TCWC

struct NRSTcwc {
enum Phase { TAIL, SYNC, HEAD }; 
struct Call {

NRSlndex process;
NRSlndex Interface;

>;
NRSlength ncalls;
Call "calls; 
struct When {

NRSlndex counter;
NRSlndex signal;
NRSlndex pc;

};
NRSRequlre require;
NRSlength nwhens;
When "whens; 
struct Handle {

NRSlndex exception;
NRSlndex pc;

>;
NRSlength nhandles;
Handle "handles;
NRSlndex pci; //
NRSlndex pc2; //
NRSlndex pcN; //
NRSlndex u;

>;

// Index Into P[]
// the Initial pc value

// Index Into C[] or 
// Index Into S[]
// pc to assign on expiration

1 If no counter

// Index Into E[]
// pc to assign on raise

the
the
the

tcwc the nth tine through (phase 1) 
tcwc the nth tine through (phase 2) 
next pc

NRSTcwc::Phase
The TCWC has three phases corresponding to: a T A IL  when it is invoked for the first 
time in an instant: a SYNC when it is invoked multiply in an instant while its children 
compute further: and BEAD when it possibly begins an instant after its children did not 
complete in some previous instant.

NRSTcwc::ncalls 
NRSTcwc::calls

The subprocesses called by the TCWC.

NRSTcwc::require
A TCWC has an implicit requirement that the status of the signals for which it holds 
guards be known before any further progress be made. This field is that implicit 
‘require.’
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NRSTcwc: rnwhens 
NRSTcwc: : when a

The ‘when’ clauses of the signal guards of the TCWC.

NRSTcwc::nhandlaa 
NRSTcwc:: handle a

The ‘h a n d le ’ clauses of the exception handlers of the TCWC.

NRSTcwc::pcl
The program counter on phase I.

NRSTcwc::pc2
The program counter on phase 2.

NRSTcwc::pcN
The program counter of the successor instruction.

NRSTcwc::u
The local signal potential of this instruction.

D.l.4.4 Potential

struct NRSPotentlal {
MRSlength nlocal;
NRSlndex *local;
NRSlength ndelegated;
NRSlndex ^delegated;

);

NRSPotentlal::nlocal 
NRSPotentlal::local

The signals which have the potential to be emitted from within the current process.

NRSPotentlal::ndelegated 
NRSPotentlal::delegated

The child processes which must be explored as well. This is a vacuous list except for 
the TCWC.

D.l.4.5 Signal

struct NRSSlgnal {
enum Presence { UNKNOWN, ABSENT, PRESENT, EMITTED };
Presence presence; 
bool potential;

>;

NRSSlgnal::Presence
The sorts of status that a signal can have. 
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NRSSlgnal::presence
The actual status of the signal.

NRSSlgnal::potential
Whether the signal has the potential to be emitted in some future microstep. 

D.l.4.6 Exception

struct NRSExceptlon {
enum status { LOWERED, RAISED };
Status status;
NRSdepth depth;

>;

NRSExceptlon::Status
The sorts of status that an exception can have.

NRSExceptlon::status
The actual status of the exception.

NRSExceptlon::depth
The depth in the process tree of the instantiated handler of the exception.

D. 1.4.7 Counter

struct NRSCounter { 
unsigned value; 
unsigned Initial; 
bool expired() const; 
void init(); 
void dec();

};

NRSCounter::value
The current value of the counter.

NRSCounter::Initial
The initializable value of the counter.

NRSCounter::expired
Is the counter expired?

NRSCounter::inlt
Reset the counter to its initial value.

NRSCounter::dec
Decrement the counter. 
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D.l.4.8 Value

The value is a descriptor which is used to inform the input and output system the size 

and location of the actual signal values. This allows a generic input and output routine to 

be created which reads in the inputs and writes out the outputs without reference to any 

particular network instance.

struct NRSValue {
NRSlength size; // may be 0
NRSvalue *value; // Is 0 If size Is 0

>;

NRSValue : t size
The size of the value.

NRSValuei:value
The locations of the values.

D.l.4.9 Input

struct NRSInput {
NRSlndex Index;// Index Into S[] ;
void (*read) (NRSNetworka, boolfc p, NRSlength n, NRSvalue *v);
NRSValue desc;

>;

NRSInput::Index
The signal corresponding to this input. It is an index into the S vector.

NRSInput::read
The read routine for that particular sort of input.

NRSInput::desc
The value descriptor.

D.l.4.10 Output

struct NRSOutput {
NRSlndex Index;// Index Into S[];
void (*write)(NRSNetworkfc, bool p, NRSlength n, NRSvalue *v);
NRSValue desc;

>;

NRSOutput::index
The signal corresponding to this output. It is an index into the S vector.
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NRSOutput:: road
The write routine for that particular sort of output.

NRSOutput t:desc
The value descriptor.

D.l.4.11 Sensor

struct NRSSensor {
void (‘read) (NRSNetworka, NRSlength n, NRSvalue *v); 
void (‘write) (NRSNetworka, NRSlength n, NRSvalue *v);

>;

NRSSensor:tread
The read operation for the sensor.

NRSSensor:twrlte
The write operation for the sensor.
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D.2 Support Code

The minimal support code for NRS is 346 lines of C++. These support routines use the 

data structures defined in Section C.l. The size for the various routines in lines of code 

and bytes of object is given in Table I.

Object File Size
Lines of

Source file C++ text data bss
EVAL.cc 41 356 0 0
MARK.cc 27 216 0 0
REQUIRE.cc 24 8& 0 0
TCWC.cc 226 748 0 0
WAIT.cc 28 416 0 0
Total 346 1524 0 0

Table I. Size in Bytes of the NRS Runtime3
a. Compiler is g++ Cygnus reno-1.3, on i486 running Linux 1.0.x
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D.2.1 -EVAL

void
NRSNetworklnstance >: EVAL ()
{

unsigned 1;
for (1-0; i<NPROCESSES; 1++)

P[l].stable - FALSE;
// Input Phase
for (1-0; 1<NSIGNALS; 1++)

S[l].presence - NRSSlgnal::UNKNOWN;
(thl*-> *read_lnputs)();
NRSProcess::State a; 
do {

// Execute Phase 
S - (*P[0].CODE)(*this, P[0]);
If (NRSProcess::RAISED —  s) {

I I  This condition Is a codegen error but If It Is not taken care 
//of then an Infinite loop occurs: pretend It was an 'exit' 
s ■ NRSProcess::TERMINATED;

}
// Mark Phase
for (1-0; 1<NSIGNALS; i++)

S[1].potential - FALSE;
M A R K ( O ) ;
for (1-0; 1<NSIGNALS; 1++) {

If ( ! S[l].potential ) {
If (NRSSlgnal::UNKNOWN ■■ S[i].presence)

3(1] .presence ■ NRSSlgnal::ABSENT;
If (NRSSlgnal::EMITTED —  S[i].presence) {

S[l].presence - NRSSlgnal::PRESENT;
>

}
} while (NRSProcess::TCLOSE[s]);
// Output Phase 
(this->*write_outputs)();
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D.2.2 MARK

The MARK algorithm determines the dynamic signal potentials.

void
NRSNa tworklnstance> :MARK (NRSlndex process)
{

if (P[procaaa].stable) 
return;

NRSlndex u ■ P [process] .u; 
if (u < 0)// the nil potential £unction 

return; 
unsigned i;
for (1*0; i<U[u].nlocal; i++)

3[ U[u].local[i] ].potential ■ TRUE; 
for (1*0; i<U[u] .ndelegated; i++)

MARK( U[u].delegated[i] );
>
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D.2.3 TCWC
miftocMi t isttu
NRSNetworklnstance::TCMC(HRSProcess& process,

const HRSTewcfc tcwc, NRSTcwc:tPhaaa phaaa)
I

if (procaas.aCabla)
return NRSProcessi:STABLE; 

unsigned 1; 
switch (phaaa) {

caaa NRSTcwc: :TAILt
for (i«0; i<tcwc.ncalls; i++) (

NRSTcwc::Call6 call « tcwp.calls[i];
NRSProcassfc proc « Ptcall.procaaa]; 

proc.pc m call.interface; 
proc.a ■ -1;// gratuitous

>

for (1*01 i <tcwc. nwhana; {
HRSTcvc:iNhanfc when ■ tewe.whanati]/ 
if (whan.countar >• 0)
C[wfaaa.countar].init()/

>
adapth ■ NRS_DEPTH_FLOOR;
for (i■&; i<tcwc.nhandlaa; !♦+) {

NRSTcwc::Handle* hand]a • tcwc.taaadlaaCi];
8[handle.exception].status - NRSExceptlon::LOWERED;

}
break; 

caaa NRSTcwc<tSTBCt
// Tfaia ia tfaa intermediate STHCINQ phaaa which ia not tha firat 
// invocation of tha iaatructioa and ita not tfaa guarding caaa 
I I  wfaaa tha instruction is invoked in a subsequent instant. 
braak>

case NRSTcwc i: HEAD I
if (NRSProcessi:STNCIHQ «“ RSQUIRB(process, teve.require)) 

return NRSProcess: t STNCINOi 
for (!■<); i<tcwc.nwhaas; !♦♦) {

NRSTcwci:Mhen£ whan • tewe.whana[i];
if (NRSSignal:IPRESENT •» a [whan.signal].presence) { 

if (whan.countar >- 0)
C[whan.counter].dac();

>
}
for (i«0; i<tcwc.nwhana; i++) (

NRSTcwct iWhana whan - tewe.whana[i];
if (NRSSignal::PRESENT ■“ s[whan.signal].praaanca) {

if (whan.counter < 0 || C[whan.counter].expired()) ( 
process.pc ■ whan.pc; 
process.u ■ -1;// gratuitous 
return NRSProcaas t -rCONTINUINO;

}
>

}
break;

1
bool raised “ FALSE; 
bool stable « FALSE; 
bool syncing - FALSE;
NRSProcess:iState s;
for (i«0; i<tcwc.ncalla; i*+ ) (

NRSTcwc::Call& call ■ tcwc.calls[i];
s “ (*P[call.process].CODE)(*this, P[call.process]); 
switch (s) {
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caaa NRSProcess:>RAISEDi 
raised |■ TRUE; 
break;

caaa NRSProcess::STABLE: 
atabla |« TRUE; 
braak;

caaa NRSProcaaa: iSINCUN:
■yncing |• TRUE; 
braak;

caaa NRSProcaaa: :CONTINUINa: 
caaa NRSProcaaar tTKRKXNATED: 
default:// this ahcmld newer happen 

braak;
)

>

if (syncing) {
procass.pc “ tcwc.pci; 
process.u " tcwc.u; 
ratam NRSProcess::SYNCING;

}
if (raised) {

if (edepth > procees-depth)
ratum HRSProcaaa t:RAISED; 

for (i«0; i<tcwc.nhandlaa; i++) (
HRSTewe::Handles handla ■ tcwc.handles[i]; 
if (NRSExceptlon::RAISED E[handla.axcaption].status) {

procass.pc - handla.pc; 
procaas.u * -1;// gratuitous 
ratum NRSProcaaa:>CONTINUING;

>
)

)
if (atabla) {

process.stable ■ TRUE; 
procass.pc ■ tcwc.pc2; 
procaas.u “ tewe.u; 
ratum NRSProcaaa::STABLE;

}
procass.pc • tcwc-pelf;
ratum NRSProcess: CONTINUING;
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D.2.4 REQUIRE

NRSProcaaa s:State
NRSNetworklnatance *: REQUIRE (NRSProceaafc process,

conat NRSRequire* require)
{

for (unsigned i«0; l<requlre.nalgnala; 1++) {
// Can be either PRESENT or ABSENT but not unknown 
If (NRSSlgnal*:UNKNOWN ■■ S[require.signals[1]].presence) { 

// process.pc stays the sane 
process.u “ require.u; 
return NRSProcess 1: SYNCING;

}
>
// process.pc is set by the caller 
return NRSProcess:sCONTINUING;

D.2.5 WAIT

NRSProcess >:State
NRSNetworklnatancetsWAIT(NRSProcessfc process, const NRSWaita wait)
{

NRSProcess*sState s ■ REQUIRE(process, wait.require); 
if (NRSProcess::CONTINUING 1> s) 

return s;
//No signal will have an UNKNOWN presence
for (unsigned i-0; icwait.require.nsignals; i++) {

if (NRSSignal::PRESENT ■■ S[wait.require.signals[i]].presence) { 
// process.pc set in the caller by virtue of continuing on 
return NRSProcess::CONTINUING;

)
>
// process.pc remains unchanged 
return NRSProcess::STABLE;

D.3 Debugger Support

The debugger for NRS consists of a Tcl/Tk [571] user interface which allows for the 

relevant aspects of the runtime system to be displayed: program counters, signals, regis

ters, exceptions, sensors and the potential sets. To facilitate this, there are a few extra runt

ime data structures which are generated at compile time. These data structures map lines 

and names to locations in the runtime system. The user interface uses these data struc

tures to present a user-friendly picture of the runtime system. The following sections
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define these data structures.

D3.1 NDBDebugger

The debugger consists of a pointer to a Tel interpreter. a symbol table “database,” the 

actual NDAM network and interfaces to the trace file reader and writer

struct NDBDebugger {
Tcl_lntarp *interp;
NDBStab ‘stab;
NRSNetworklnatance ‘network;
NDBTraceFileReader ‘reader;
NDBTracaFilaWriter ‘writer;
NDBDebugger(Tcl_Interp ‘interpreter,

NRSNetworklnstancefc network_instance,
NDBStabfc instance_stab);

-NDBDebugger();
void INITIAL(); 
void UPDATE(); 
void RESET(); 
void EVALO ;
void read_inputs(); 
void wrlte_outputs();

>;

NDBDebugger::INITIAL
Initialize the debugger

NDBDebugger::UPDATE
Update the user interface with values from the network

NDBDebugger::RESET
Reset the debugger

NDBDebugger::EVAL
Evaluate the network with the previously-defined inputs

NDBDebugger::read_inputs
Read the input values that have been defined in the user interface. 
Set them into the network in preparation for an e y a l .

NDBDebugger::write_outputs
Write the output values back to the user interface. 
The output values were produced by the network during eval.
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D3.2 The Stab Record

The Symbol Table “database” manages all of the instruction source code line number 

and register, signal and exception name mappings. The majority of the structure consists 

of tables which are created at compile-time with the debug option.

struct NDBStab { 
struct Process {

struct Label { 
char *name;
int line; // zero offaat; -1 means undefined
lnt start; // -1 means undefined
int end; // -l means undefined

>;
char *nama; 
unsigned nlabels;
Label *L;

};
struct Signal { 

char *name;
NRSValue desc;

>;
struct Exception { 

char *name;
NRSValue desc;

);
struct Register { 

char *name;
NRSValue desc;

>;
struct Sensor { 

char *name;
>;
struct Counter { 

char *name;
In
struct Type { 

char *name; 
long low; 
long high;

>;
unsigned NPROCESSES;
Process *P; 
unsigned NSIGNALS;
Signal *S;
unsigned NEXCEPTXOHS;
Exception *E; 
unsigned NREGISTERS;
Register *R; 
unsigned NSENSORS;
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Sensor *X;
unsigned NCOUNTERS;
Counter *C;
char ‘sourceflle;
NDBStab (unsigned _NCODNTBRSr Counter *_C,

unsigned _NEXCEPTIONS, Exception *_E, 
unsigned _NPROCESSES, Process *_P, 
unsigned _NREGISTERS, Register *_R, 
unsigned _N8SNS0RS, Sensor *_X, 
unsigned JNSXGgAIiS, Signal *_S, 
char ‘filename);

-NDBStab();
void UPDATE(Tcl_Interp ‘lnterp, NRSNetworklnatance *N);

>;

NDBStab::UPDATE
The user interface is updated with the values from the network instance.
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